
The step-by-step protocol for storing
crypto in a highly secure way

Based on the popular Glacier protocol

Version 0.94.1 RC2
Check the latest version (https://vogelito.github.io/glacierprotocol/)

https://vogelito.github.io/glacierprotocol/
https://vogelito.github.io/glacierprotocol/

1. Glacier overview

1.1. About CryptoGlacier

1.2. Key concepts

1.3. Multi-signature security

1.4. Attack surface and failure points

2. Before you start

2.1. Protocol overview

2.2. Hardware required

2.3. Protocol structure

3. Setup

3.1. Verify and print protocol document

3.2. Prepare non-quarantined hardware

3.3. Prepare quarantined hardware

3.4. Create boot USBs

3.5. Create App USBs

3.6. Prepare quarantined workspaces

4. Key Generation

4.1. Generate BIP39 Mnemonic

4.2. Transfer cold storage data to paper

5. Multisig Account Creation

5.1. Create your Multisig Accounts

5.2. Create your Bitcoin, Litecoin, and Bitcoin Cash Multisig Wallets

5.3. Create your Ethereum Multisig Contract

5.4. Create your XRP Multisign Account

5.5. Create Cold Storage Information Packet

6. Deposit

6.1. Test deposit and withdrawal

6.2. Deposit execution

6.3. Store cold storage data

7. Withdrawal

7.1. Preparation

7.2. Withdrawing Bitcoin, Litecoin or BitcoinCash

7.3. Withdrawing Ethereum & ERC20 Tokens

7.4. Withdrawing XRP

8. Balance and maintenance

8.1. Check your balance

8.2. Maintenance

2/106

9. Extend Glacier

9.1. Extend Glacier security

9.2. Possible improvements to CryptoGlacier

9.3. Ecosystem improvements

10. Contribute

10.1. License

10.2. Acknowledgments

11. Design documents

11.1. Design document

3/106

1. Glacier overview

4/106

1.1. About CryptoGlacier
CryptoGlacier is a step-by-step protocol for storing crypto assets in a highly secure manner. It is based

on the popular Glacier Protocol (https://glacierprotocol.org/).

There are two main differences between CryptoGlacier and Glacier:

• CryptoGlacier adds support for other cryptocurrencies

• CryptoGlacier is not intended for personal storage, but situations where various, distinct,

keyholders must agree with each other to access funds

CryptoGlacier does not address institutional security needs such as internal controls, and transparent

auditing. It does prevent access to funds by a single individual.

Just as Glacier, CryptoGlacier is also intended for:

• Large amounts of money ($100,000+): CryptoGlacier thoroughly considers corner cases such as

obscure vectors for malware infection, human error resulting in loss of funds, and so on. Even if

your crypto holdings are more modest, it’s worth considering using CryptoGlacier. If crypto proves

successful as a technology, it will appreciate 10x (or much more) in the coming years. Security

will become increasingly important if your holdings appreciate and crypto becomes a more

attractive target for thieves. Consider Glacier Protocol (https://glacierprotocol.org/) if you’re

looking for personal storage.

• Long-term storage: CryptoGlacier not only considers the crypto security landscape today, but also

a future world where crypto is much more valuable and attracts many more security threats.

• Infrequently-accessed funds: Accessing highly secure funds is cumbersome and introduces

security risk through the possibility of human error, so it is best done infrequently.

• Technically unskilled users: Although the CryptoGlacier protocol is long, it is clear and

straightforward to follow. Some technical expertise is required.

The CryptoGlacier protocol covers crypto storage, not procurement. It assumes you already possess

crypto and wish to store it more securely.

If you are already familiar with crypto security concepts and are certain that you want high security,

multi-signature, cold storage, you may prefer to read Trusting This Protocol and then skip to the section

Choosing a Multisignature Withdrawal Policy.

Supported Cryptocurrencies
This document currently supports:

• Bitcoin

5/106

https://glacierprotocol.org/
https://glacierprotocol.org/
https://glacierprotocol.org/
https://glacierprotocol.org/

• Bitcoin Cash

• Ethereum

• Etherum-based ERC20 tokens

• Litecoin

• XRP

Trusting this protocol
Funds secured using CryptoGlacier can only be as secure as its design. As previously mentioned,

CryptoGlacier is based on the Glacier protocol but has some important distinctions and at the time of

writing it hasn’t yet attracted widespread Expert Advisory or Community Review.

CryptoGlacier and CryptoGlacierScript, the CryptoGlacier companion software, are open source. The

code is straightforward and well-commented to facilitate easy review for flaws or vulnerabilities. View it

on Github (https://github.com/vogelito/CryptoGlacierProtocol).

All documentation and code related to this protocol is under open licenses (Creative Commons for the

document, MIT license for the code), enabling others to publish their own revisions. Inferior alternatives

will tend to lose popularity over time.

If you like, you may review the design document of the Glacier Protocol for details on the technical

design.

Background
Glacier vs CryptoGlacier
Let’s start by assessing whether Glacier or CryptoGlacier is right for you. Some advantages of

CryptoGlacier include:

• Storing multiple crypto assets: Although Bitcoin remains the most popular cryptocurrency, today

we have hundreds of crypto assets which are currently not supported by the Glacier protocol.

• BIP39 Mnemonics: CryptoGlacier allows you to derive keys across crypto-protocols by storing a

24-word mnemonic. This adds simplicity for key-storage and supports multiple protocols.

• Multiple key holders: CryptoGlacier was designed for multiple key holders and prevents a single

entity from ever having unilateral access to funds. Glacier is meant for personal storage of Bitcoin

where a single individual can always access funds unilaterally.

• HD wallets for Bitcoin, Bitcoin Cash and Litecoin: CryptoGlacier increases privacy by utilizing HD

wallets instead of reusing addresses as the original Glacier Protocol does.

6/106

https://github.com/vogelito/CryptoGlacierProtocol
https://github.com/vogelito/CryptoGlacierProtocol
https://github.com/vogelito/CryptoGlacierProtocol

Self-Managed Storage vs. Managed by a third party
There is no such thing as perfect security. There are only degrees of security, and those degrees come at

a cost (in time, money, convenience, etc.) So the first question is: How much security are you willing to

invest in? In the last few years we’ve seen a rise of 3rd party institutional custody solutions for crypto

assets. Most allow for multiple signatories, estate planning, etc. The pros and cons of the various 3rd

party services are beyond the scope of this document. Some options are BitGo (https://bitgo.com/),

Coinbase Custody (https://custody.coinbase.com/), Ledger Vault (https://www.ledger.com/vault/), and

Vo1t (https://vo1t.io/).

However, all 3rd party storage services still come with some notable risks which self-managed storage

does not have:

1. Identity spoofing: Your account on the service could be hacked (including through methods such

as identity theft, where someone convinces the service they are you).

2. Network exposure: 3rd party services still need to transmit security-critical information over the

Internet, which creates an opportunity for that information to be stolen. In contrast, self-managed

storage can be done with no network exposure.

3. Under constant attack: 3rd party services can be hacked by attackers from anywhere in the world.

People know these services store lots of funds, which makes them much larger targets. If there’s

a flaw in their security, it’s more likely to be found and exploited.

4. Internal theft: They have to protect against internal theft from a large group of employees &

contractors.

5. Intentional seizure: They have the ability (whether of their own volition, or under pressure from

governments) to seize your funds. There is historical precedent for this, even if funds are not

suspected of criminal involvement. In 2010, Cyprus unilaterally seized many bank depositors’

funds (https://www.theguardian.com/world/2013/mar/25/cyprus-bailout-deal-eu-closes-bank) to

cope with an economic crisis. In 1933, the US abruptly demanded citizens surrender almost all

gold they owned to the government (https://en.wikipedia.org/wiki/Executive_Order_6102).

Regardless of how one views the political desirability of these particular decisions, there is

precedent for governments taking such an action, and one cannot necessarily predict the reasons

they might do so in the future. Furthermore, Bitcoin still operates in a political and legal gray zone,

which increases these political risks.

Some 3rd party services have insurance to cover losses, although that insurance doesn’t protect against

all of these scenarios, and often has limits on the amount insured.

7/106

https://bitgo.com/
https://bitgo.com/
https://custody.coinbase.com/
https://custody.coinbase.com/
https://www.ledger.com/vault/
https://www.ledger.com/vault/
https://vo1t.io/
https://vo1t.io/
https://www.theguardian.com/world/2013/mar/25/cyprus-bailout-deal-eu-closes-bank
https://www.theguardian.com/world/2013/mar/25/cyprus-bailout-deal-eu-closes-bank
https://www.theguardian.com/world/2013/mar/25/cyprus-bailout-deal-eu-closes-bank
https://en.wikipedia.org/wiki/Executive_Order_6102
https://en.wikipedia.org/wiki/Executive_Order_6102
https://en.wikipedia.org/wiki/Executive_Order_6102

These risks are not theoretical. Many online services have lost customers’ funds (and not reimbursed

them), including Mt. Gox (https://www.bloomberg.com/news/articles/2014-02-28/mt-gox-exchange-

files-for-bankruptcy), Bitfinex (http://www.bbc.com/news/technology-37009319), and many more.

Many people use online or hybrid solutions to store sizeable amounts of money. We recommend self-

managed storage for large holdings, but ultimately it’s a personal decision based on your risk tolerance

and costs you’re willing to pay (in money and time) for security.

CryptoGlacier focuses exclusively on storage managed by different entities where not a single entity has

unilateral control over the funds.

CryptoGlacier vs. Hardware Wallets
Many people who choose self-managed storage (as opposed to an online storage service) use “hardware

wallets” such as the Trezor (https://trezor.io/), Ledger (https://www.ledgerwallet.com/), and KeepKey

(https://www.keepkey.com/) to store their crypto. These products can be setup in a way where multi-

signature is required to move funds. While these are great products that provide strong security,

CryptoGlacier is intended to offer an even higher level of protection than today’s hardware wallets can

provide.

The primary security consideration is that all hardware wallets today operate via a physical USB link to a

regular computer. While they employ extensive safeguards to prevent any sensitive data (such as private

keys) from being transmitted over this connection, it’s possible that an undiscovered vulnerability could

be exploited by malware to steal private keys from the device.

For details on this and other security considerations, see the “No Hardware Wallets” section of the

design document. As with online multisig vaults, many people do use hardware wallets to store sizeable

amounts of money. We personally recommend CryptoGlacier for large holdings, but ultimately it’s a

personal decision based on your risk tolerance and costs you’re willing to pay (in money and time) for

security.

1.2. Key concepts
Private Key
Your currency balances are effectively stored in crypto blockchains – global decentralized ledgers. You

can imagine a locked box with all of your funds sitting inside of it. This box is unlocked with a piece of

information known as “private key”. (The boxes we’ll be creating require multiple private keys to unlock;

see the section “Multisignature Security” below.)

8/106

https://www.bloomberg.com/news/articles/2014-02-28/mt-gox-exchange-files-for-bankruptcy
https://www.bloomberg.com/news/articles/2014-02-28/mt-gox-exchange-files-for-bankruptcy
https://www.bloomberg.com/news/articles/2014-02-28/mt-gox-exchange-files-for-bankruptcy
https://www.bloomberg.com/news/articles/2014-02-28/mt-gox-exchange-files-for-bankruptcy
http://www.bbc.com/news/technology-37009319
http://www.bbc.com/news/technology-37009319
https://trezor.io/
https://trezor.io/
https://www.ledgerwallet.com/
https://www.ledgerwallet.com/
https://www.keepkey.com/
https://www.keepkey.com/
https://www.keepkey.com/
https://www.keepkey.com/

Unlike a password, a private key is not meant for you to remember. It’s a long string of gibberish. The

private key is what you need to keep secure. If anyone gets it, they can take your money. Unlike

traditional financial instruments, there is no recourse. There is no company that is liable, because

blockchains are decentralized systems not run by any person or entity. And no law enforcement agency

is likely to investigate your case.

The protocol makes use of BIP39 (https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki)

and BIP32 (https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki). This will allow us to

deterministically derive keys across blockchains from a 24-word phrase. This 24-word phrase is more

commonly known as a mnemonic phrase, mnemonic recovery phrase or mnemonic seed. It’s a list of

words which stores all the information needed to recover your private keys across protocols.

Offline Key Storage (“Cold Storage”)
You don’t want to store your private key on any computer that’s connected to the Internet (“hot storage”),

because that exposes it to more hacking attempts. There are viruses out there that search computers for

private keys and steal them (thereby stealing your money).

One way to protect against this is by encrypting your private key, so even if a thief steals it, they can’t

read it. This helps, but is not foolproof. For example, a thief might install keylogger malware (https://

en.wikipedia.org/wiki/Keystroke_logging) so that they steal your password too.

Online keys are inherently exposed to hackers. You therefore need to make sure your private key stays

offline (“cold storage”) at all times.

Paper Key Storage
Because the mnemonic phrase is a relatively small piece of information, it can be stored on paper as

easily as it can be stored on a computer. And when it comes to key storage, paper has various

advantages compared to computers: It’s always offline (no chance of accidentally connecting it to the

Internet!), it’s easy & cheap to make multiple copies for backups, and it’s not susceptible to mechanical

failure.

1.3. Multi-signature security
Central to our security protocol is a technique called “multisignature security.” You’ll need a quick primer

on this topic to understand the CryptoGlacier protocol.

9/106

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://en.wikipedia.org/wiki/Keystroke_logging
https://en.wikipedia.org/wiki/Keystroke_logging
https://en.wikipedia.org/wiki/Keystroke_logging
https://en.wikipedia.org/wiki/Keystroke_logging

Regular Private Keys are Risky
Remember that anybody with access to your private key can access your funds. And if you lose your

private key, you cannot access your money; it is lost forever. There is no mechanism for reversal, and

nobody to appeal to.

This makes it difficult to keep funds highly secure. For example, you might store a private key on paper in

a safe deposit box at a bank, and feel fairly safe. But even this is not the most robust solution. The box

could be destroyed in a disaster, or be robbed (perhaps via identity theft), or intentionally seized (http://

abcnews.go.com/GMA/story?id=4832471).

You can try to mitigate these risks by storing the key yourself, perhaps in a fireproof home safe (as

opposed to a bank). But this introduces new risks. A determined thief (perhaps a professional who

brings safe-drilling tools on their burglary jobs, or who somehow got wind of the fact that you have a

$100,000 slip of paper sitting in a safe) might break into the safe and steal the wallet.

Or a major natural disaster might prevent you from returning home for an extended period, during which

time your safe is looted.

What is Multisignature Security?
To address these issues, most cryptocurrency protocols provide a way to secure funds with a set of

private keys, such that some of the keys (but not necessarily all) are required to withdraw funds. For

example, you might secure your funds with 3 keys but only need any 2 of those keys to withdraw funds.

(This example is known as a “2-of-3” withdrawal policy.)

The keys are generated and controlled by different entities in different locations so someone who gets

access to one key will not automatically have access to the others. Key custodians are called

“signatories.”

This approach of using multiple keys is known as “multisignature security.” The “signature” part of

“multisignature” comes from the process of using a private key to access funds, which is referred to as

“signing a transaction.” Multisignature security is analogous to a bank requiring signatures from multiple

people (for example, any 2 of a company’s 3 designated officers) to access funds in an account.

10/106

http://abcnews.go.com/GMA/story?id=4832471
http://abcnews.go.com/GMA/story?id=4832471
http://abcnews.go.com/GMA/story?id=4832471
http://abcnews.go.com/GMA/story?id=4832471

How Does Multisignature Security Help?
Multisignature security protects against the following scenarios:

• Theft: Even if somebody physically breaks into a safe, any one key is not enough to steal the

money.

• Loss: If a key is destroyed or simply misplaced, you can recover your money using the remaining

keys.

• Key-man risk: By having multiple signatories you significantly reduce the risk of loss of funds in

case a signatory dies or becomes incapacitated. In the case of duress, a single-signatory is

unable to access funds.

• Unilateral access: With multisignature security, signatories with a key will not be able to move

funds (unless they steal additional key(s), or collude with additional signatories). This allows for

more institutional decision-making.

Choosing a Multisignature Withdrawal
Policy
An M-of-N Multisignature Withdrawal Policy will provide a way to enforce multi-person control over fund

access. N signatories will generate a key each so that M < N of them (M of N) are needed in order to

access funds, but no smaller group up to M -1 can do so.

For example, in a 1-of-2 setup, there would be two signatories and any one of them would be able to

spend funds. In a 2-of-3 setup, there would be three signatories and at least two will be required to spend

funds.

By choosing M < N, you give up control but gain redundancy in the event of key loss.

Depending on your use case, you will need to optimize choosing your M-of-N policy. You will need to

select a policy before beginning the protocol.

Signatory responsibilities
Each signatory is responsible for securing their key in a safe deposit box. Signatories should make legal

arrangements in advance so their key can be accessed in case of death or incapacitation. CryptoGlacier

doesn’t provide specific procedures to ensure this.

11/106

The most fail-safe way to ensure a signatory’s agent will have access to a signatory’s safe deposit box is

to check with the bank. Standard estate planning legal documents should allow a signatory’s agent to

access the box upon a signatory’s death or incapacitation. But banks can be fussy and sometimes prefer

their own forms.

Choosing signatories
Consider the following when choosing signatories:

• Availability: If your signatory lives in a rural area, there may not be many vaults or safe deposit

boxes that are practical to get to.

• Privacy: Signatories will have the ability to see account balances.

• Signatory collusion: Although possessing one key won’t allow a signatory to access your funds,

signatories might collude with each other to steal funds.

• Signatory reliability: A signatory may fail to store the key securely, or they may lose it.

• Geography risk: Signatories should be located in different physical locations to reduce the risk of

loss of funds due to events that could affect wide geographical areas, like natural disasters or

power losses which could potentially affect all your signatories’ capability to sign transactions.

• Jurisdiction risk: Signatories should be located in different jurisdictions to reduce the risk of a

coordinated fund seizure attack.

• Signatory safety: Giving your signatories custody of a valuable key may expose them to the risk of

targeted physical theft.

• Kidnapping risk: If your signatories anticipate traveling in high-crime areas with kidnapping risk

(http://www.nytimes.com/2012/05/03/business/kidnapping-becomes-a-growing-travel-risk.html),

funds will be at greater risk because a signatory will have the ability to access them remotely (by

contacting other signatories and asking for their keys). Financially-motivated kidnapping hinges

on a signatory’s ability to access funds to give to the kidnappers. If a signatory is literally unable

to access additional funds (because there are duress protocols in place or signatories do not

know of each other or don’t have a way of contacting each other), kidnappers will have no

incentive to hold a signatory.

1.4. Attack surface and failure
points
This list describes the attack surface and other failure points for CryptoGlacier. We include only attacks

and failures limited in scope to specific coins. Attacks and failures related to the broader crypto

ecosystem as a whole (newly discovered cryptographic flaws, critical Bitcoin protocol security or

scalability failures, etc.) are not included as most are equally likely to impact the value of all crypto

whether or not they are secured with CryptoGlacier.

12/106

http://www.nytimes.com/2012/05/03/business/kidnapping-becomes-a-growing-travel-risk.html
http://www.nytimes.com/2012/05/03/business/kidnapping-becomes-a-growing-travel-risk.html
http://www.nytimes.com/2012/05/03/business/kidnapping-becomes-a-growing-travel-risk.html
http://www.nytimes.com/2012/05/03/business/kidnapping-becomes-a-growing-travel-risk.html

This list assumes no security measures from Extend CryptoGlacier security are implemented.

Most attacks require the presence of malware, either in or near the quarantined environment. We’ll

therefore inventory two layers of CryptoGlacier’s attack surface:

• Ways in which a malware infection might occur

• Ways in which a critical failure might happen (possibly, but not necessarily, due to a malware

infection)

Malware infection vectors
• Software

◦ OS/App software has malware (i.e. malicious code) built into official distributions. In

particular, CryptoGlacier relies on the following packages and their dependencies NOT to

distribute malicious code:

▪ Ubuntu desktop

▪ zbar-tools (via Ubuntu Package archive)

▪ qrencode (via Ubuntu Package archive)

▪ libappindicator1 (via Ubuntu Package archive)

▪ libindicator7 (via Ubuntu Package archive)

▪ Electrum

▪ Electrum-LTC

▪ Electron-Cash

▪ Gnosis’ MultiSigWallet

▪ nodejs (via Nodesource)

▪ Several node packages (and their dependencies) are required for

CryptoGlacierScript (via npm):

▪ argparse

▪ bip39

▪ bitcoinjs-lib

▪ enquirer

▪ ethereumjs-tx

▪ ethereumjs-wallet

▪ js-sha256

▪ lodash.clonedeep

▪ ripple-bip32

▪ ripple-keypairs

▪ ripple-lib

▪ ripple-sign-keypairs

▪ wallet-address-validator

13/106

◦ Malware on Setup Computer infects Setup USB software AND malware on Setup USB

infects Quarantined USB software AND checksum verifications produces false positives

▪ Checksum false positives could happen because:

▪ Malware might interfere with the verification process (or the display of its

results).

▪ The checksum verification software could be compromised.

▪ Verifying the integrity of GnuPG requires one have access to a trusted

installation of GnuPG, but many CryptoGlacier users won’t have that.

CryptoGlacier currently recommends users simply trust the version of

GnuPG they download.

◦ Malware on Setup Computer infects OS/App USB software AFTER checksum verification

produces a true positive (i.e. before/during copying of software to the USB, or during USB

ejection)

• Firmware

◦ Malware on Setup Computer infects Setup Boot USB firmware AND malware on Setup Boot

USB infects Quarantined Boot/App USB

◦ Laptop or USB firmware has malware in the shrinkwrapped package

• Hardware

◦ Laptop or USB hardware has “malware” in the shrinkwrapped package. e.g. a USB JTAG

exploit (http://www.itnews.com.au/news/intel-debugger-interface-open-to-hacking-via-

usb-446889) or chip-level backdoors (such as this rootkit (https://www.wired.com/

2016/06/demonically-clever-backdoor-hides-inside-computer-chip/)). “Malware” usually

refers to software, but we’re using it here more broadly to mean “computing technology

which undermines the integrity of the computing environment in which it resides.”

Failure scenarios
Electronic failures

• Exfiltration of critically sensitive data (e.g. private keys)

◦ A Quarantined Computer leaks critically sensitive data over a side channel (https://

en.wikipedia.org/wiki/Side-channel_attack) (possibly due to malware) AND complementary

malware on a (networked or attacker-controlled) device in range steals the data

▪ Visual side channel (does not require malware on the quarantined computer, since

sensitive data is displayed on the screen as part of the protocol). If the protocol is

followed, the attack surface here should be narrow, as users are instructed to block

all visual side channels. However, at a minimum, they are using their smartphone for

reading QR codes, and that has a camera on it.

14/106

http://www.itnews.com.au/news/intel-debugger-interface-open-to-hacking-via-usb-446889
http://www.itnews.com.au/news/intel-debugger-interface-open-to-hacking-via-usb-446889
http://www.itnews.com.au/news/intel-debugger-interface-open-to-hacking-via-usb-446889
http://www.itnews.com.au/news/intel-debugger-interface-open-to-hacking-via-usb-446889
http://www.itnews.com.au/news/intel-debugger-interface-open-to-hacking-via-usb-446889
https://www.wired.com/2016/06/demonically-clever-backdoor-hides-inside-computer-chip/
https://www.wired.com/2016/06/demonically-clever-backdoor-hides-inside-computer-chip/
https://www.wired.com/2016/06/demonically-clever-backdoor-hides-inside-computer-chip/
https://www.wired.com/2016/06/demonically-clever-backdoor-hides-inside-computer-chip/
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack

▪ Acoustic side channel, if inadequately blocked (i.e. insufficient sound blockage or

masking noise). See example (https://www.wired.com/2016/06/clever-attack-uses-

sound-computers-fan-steal-data/).

▪ Radio side channel (example 1 (https://www.usenix.org/legacy/event/sec09/tech/

full_papers/vuagnoux.pdf) , example 2 (http://cyber.bgu.ac.il/content/how-leak-

sensitive-data-isolated-computer-air-gap-near-mobile-phone-airhopper) , example 3

(https://www.wired.com/2015/06/radio-bug-can-steal-laptop-crypto-keys-fits-inside-

pita/))

▪ Seismic side channel (example (https://www.cc.gatech.edu/fac/traynor/papers/

traynor-ccs11.pdf))

▪ Thermal side channel (example (http://cyber.bgu.ac.il/blog/bitwhisper-heat-air-

gap))

▪ Magnetic side channel (example (http://fc15.ifca.ai/preproceedings/

paper_14.pdf))

◦ Malware on a Quarantined Computer exfiltrates critically sensitive data via QR codes AND

cooperating malware on the QR reading device steals the data. The risk of this scenario is

negligible; unless the attacker simultaneously compromised every major smartphone QR

reader with cooperating malware, any manipulation of QR codes would be quickly detected

by people using non-compromised QR reader software, leading to widespread awareness

and isolation of the threat. This makes it a very unattractive attack vector.

◦ Critically sensitive data is leaked (intentionally or otherwise) as part of the payload of valid

data (e.g. if the nonce used for a transaction signature contains bits of the private key)

• Undetected generation of flawed sensitive data. (Requires compatible malware present on BOTH

quarantined environments)

◦ Private key creation is compromised to make keys easily guessable

◦ Transaction creation is compromised to use output addresses belonging to an attacker,

AND cooperating malware on a networked computer sends the malicious transaction

before the manual address verification is done)

Physical failures
• M paper keys are stolen by an attacker

• (N-M+1) paper keys are lost or destroyed, making it impossible to achieve M signatories

• An attacker with physical line-of-sight to the laptop takes a photo of the screen while sensitive

data is displayed

• Malware on the quarantined machines writes sensitive data to persistent media (USB or laptop

hard drive) AND the hardware is physically stolen afterward

CryptoGlacier protocol failures
• CryptoGlacier hosting (i.e. DNS, Github, website hosting, etc.) is compromised to inject

weaknesses into the protocol documentation or CryptoGlacierScript

15/106

https://www.wired.com/2016/06/clever-attack-uses-sound-computers-fan-steal-data/
https://www.wired.com/2016/06/clever-attack-uses-sound-computers-fan-steal-data/
https://www.wired.com/2016/06/clever-attack-uses-sound-computers-fan-steal-data/
https://www.wired.com/2016/06/clever-attack-uses-sound-computers-fan-steal-data/
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
http://cyber.bgu.ac.il/content/how-leak-sensitive-data-isolated-computer-air-gap-near-mobile-phone-airhopper
http://cyber.bgu.ac.il/content/how-leak-sensitive-data-isolated-computer-air-gap-near-mobile-phone-airhopper
http://cyber.bgu.ac.il/content/how-leak-sensitive-data-isolated-computer-air-gap-near-mobile-phone-airhopper
http://cyber.bgu.ac.il/content/how-leak-sensitive-data-isolated-computer-air-gap-near-mobile-phone-airhopper
https://www.wired.com/2015/06/radio-bug-can-steal-laptop-crypto-keys-fits-inside-pita/
https://www.wired.com/2015/06/radio-bug-can-steal-laptop-crypto-keys-fits-inside-pita/
https://www.wired.com/2015/06/radio-bug-can-steal-laptop-crypto-keys-fits-inside-pita/
https://www.wired.com/2015/06/radio-bug-can-steal-laptop-crypto-keys-fits-inside-pita/
https://www.wired.com/2015/06/radio-bug-can-steal-laptop-crypto-keys-fits-inside-pita/
https://www.wired.com/2015/06/radio-bug-can-steal-laptop-crypto-keys-fits-inside-pita/
https://www.cc.gatech.edu/fac/traynor/papers/traynor-ccs11.pdf
https://www.cc.gatech.edu/fac/traynor/papers/traynor-ccs11.pdf
https://www.cc.gatech.edu/fac/traynor/papers/traynor-ccs11.pdf
https://www.cc.gatech.edu/fac/traynor/papers/traynor-ccs11.pdf
http://cyber.bgu.ac.il/blog/bitwhisper-heat-air-gap
http://cyber.bgu.ac.il/blog/bitwhisper-heat-air-gap
http://cyber.bgu.ac.il/blog/bitwhisper-heat-air-gap
http://cyber.bgu.ac.il/blog/bitwhisper-heat-air-gap
http://fc15.ifca.ai/preproceedings/paper_14.pdf
http://fc15.ifca.ai/preproceedings/paper_14.pdf
http://fc15.ifca.ai/preproceedings/paper_14.pdf
http://fc15.ifca.ai/preproceedings/paper_14.pdf

• Protocol delivery is compromised (e.g. with a man-in-the-middle attack on the user’s computer or

network) to deliver or display a weakened version of the protocol documentation or software

• Protocol hardcopy is compromised (e.g. by malware to alter the user’s hardcopy as it is printed)

• A flaw in CryptoGlacierScript causes sensitive data to be leaked or flawed

• Human error during protocol execution

• Design failure in the protocol misses or inadequately addresses a risk

For potential man-in-the-middle vulnerabilities, we mitigate this by signing a checksum of the

CryptoGlacier document itself, and including steps in the protocol for users to verify the signature and

checksum. But this is not foolproof:

An attacker could remove the self-verification procedure from the protocol document, and many users

would not notice.

• An attacker could compromise the key-pair and create a fraudulent signature (although this is

exceedingly unlikely, due to Keybase’s key verification systems)

• The protocol document does begin with document self-verification on one Setup Computer.

However, it doesn’t guide the user through self-verification on the second Setup Computer. Nor

does it have them re-verify the document when they first boot into Ubuntu on the Setup

Computers to create the Quarantined Boot USBs. If the portion of the protocol document related

to creating the Quarantined Boot USBs were compromised between the initial self-validation & the

later re-validation (when creating the Quarantined App USBs), the user would probably not notice,

even without a forged signature.

• Protocol hardcopy is compromised (e.g. by malware to alter the user’s hardcopy as it is printed)

• A flaw in CryptoGlacierScript causes sensitive data to be leaked or flawed

• Human error during protocol execution

• Design failure in the protocol misses or inadequately addresses a risk

Gnosis MultiSigWallet Failure
The Gnosis MultiSigWallet is a smart contract deployed on the Ethereum network. Albeit being used to

store significant funds, there is no guarantee that a flaw with the smart contract will not be found in the

future. Funds in smart contracts have previously been compromised. Example one (https://

www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach), two (https://medium.com/

swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee), and three (https://

mashable.com/2017/11/08/ethereum-parity-bug/) should serve as cautionary tales.

16/106

https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://mashable.com/2017/11/08/ethereum-parity-bug/
https://mashable.com/2017/11/08/ethereum-parity-bug/
https://mashable.com/2017/11/08/ethereum-parity-bug/
https://mashable.com/2017/11/08/ethereum-parity-bug/

2. Before you start

17/106

2.1. Protocol overview
This section establishes a basic understanding of the CryptoGlacier protocol in order to facilitate its

execution. For more background on the protocol’s design, see the Glacier design document.

As previously described, the CryptoGlacier protocol is based on the Glacier protocol. It’s aim is to put

crypto funds in cold storage, using multisignature security, with keys generated and accessible by

distinct signatories stored only on paper.

Eternally Quarantined Hardware
The bulk of the CryptoGlacier protocol consists of ways to safeguard against theft of private keys due to

malware infection. To accomplish this, CryptoGlacier uses eternally quarantined hardware.

Quarantined hardware means we drastically limit the ways in which a piece of hardware interfaces with

the outside world in order to prevent the transmission of sensitive data (e.g. private keys) or harmful data

(e.g. malware). We consider all interfaces – network, USB, printer, and so on – because any of them

might be used to transmit malware or private keys.

Eternally quarantined hardware means we use factory-new hardware for this purpose (to minimize risk of

prior malware infection), and never lift the quarantine. The quarantine is permanent because any

malware infection which does somehow get through the quarantine might wait indefinitely for an

opportunity to use an available interface (e.g. the Internet, if a quarantined laptop is later used to access

the web). Eternal quarantining renders the hardware essentially useless for anything else but executing

this protocol.

Parallel Hardware Stacks
There is a class of attacks which rely not on stealing your sensitive data (e.g. private keys), but in

subverting the process of generating your sensitive data so it can be more easily guessed by a third

party. We call this “flawed data.”

For example, a variant of the Trojan.Coinbitclip (https://www.symantec.com/security-center/writeup/

2016-020216-4204-99) attack which replaces keys displayed on your screen (or keys stored in your

clipboard) with insecure keys.

Because we are generating our data in eternally quarantined environments, any malware infection

attempting this is unlikely to have come from your other computers – it would likely have already been

present when the quarantined system arrived from the manufacturer. For example, the Lenovo rootkit or

this Dell firmware malware infection.

18/106

https://www.symantec.com/security-center/writeup/2016-020216-4204-99
https://www.symantec.com/security-center/writeup/2016-020216-4204-99
https://www.symantec.com/security-center/writeup/2016-020216-4204-99
https://www.symantec.com/security-center/writeup/2016-020216-4204-99

The way to defeat these attacks is to detect them before we actually use the flawed data. We can detect

such an attack by making sure each signatory replicates the entire data generation process on two sets

of eternally quarantined hardware, from different manufacturers. If the process generates identical data

on both sets of hardware, we can be highly confident the data is not flawed because it would have to be

an identical attack present on both sets of hardware, factory-new from different manufacturers. This is

exceptionally unlikely.

Electrum (and forks), Gnosis
MultiSigWallet and CryptoGlacierScript
The original Glacier Protocol relies on Bitcoin Core (https://bitcoincore.org/) for all cryptographic and

financial operations because “its open source code is the most trustworthy… due to its track record of

securing large amounts of money for many years, and the high degree of code review scrutiny it has

received.” Unfortunately Bitcoin Core only supports Bitcoin transactions and it lacks support for BIP39

mnemonics.

CryptoGlacier relies on Electrum (https://electrum.org) for Bitcoin transactions, Electrum-LTC (https://

electrum-ltc.org) (a fork of Electrum) for Litecoin transactions, Electron-Cash (https://electroncash.org/)

for Bitcoin Cash transactions and Gnosis MultiSignatureWallet (https://github.com/gnosis/

MultiSigWallet) for Ethereum and ERC20 transactions. Although none of these projects have received the

amount of code review scrutiny that Bitcoin Core has received, they are all popular open-source projects

with significant contributions and code reviews.

CryptoGlacier also utilizes CryptoGlacierScript, a software program that automates much of the manual

work involved in executing the protocol. It is also used for all cryptographic and financial operations for

XRP transactions. CryptoGlacierScript’s open source code (https://github.com/vogelito/

CryptoGlacierProtocol) aims to be straightforward and be extensively commented to facilitate easy

review for flaws or vulnerabilities.

Protocol Output
The end result of the CryptoGlacier protocol is two sets of paper information packets per signatory. A

private packet with the mnemonic phrase (which will be created by each signatory independently) and a

packet which will be shared among signatories (which will be created by a designated signatory and

distributed to the rest).

Each signatory will have a private and never to be shared package containing:

• A 24-word seed mnemonic based on BIP39 – these 24 words will be used to derive the private

keys that will provide one of the signatures needed to move your funds.

19/106

https://bitcoincore.org/
https://bitcoincore.org/
https://electrum.org
https://electrum.org
https://electrum-ltc.org
https://electrum-ltc.org
https://electrum-ltc.org
https://electrum-ltc.org
https://electroncash.org/
https://electroncash.org/
https://github.com/gnosis/MultiSigWallet
https://github.com/gnosis/MultiSigWallet
https://github.com/gnosis/MultiSigWallet
https://github.com/gnosis/MultiSigWallet
https://github.com/vogelito/CryptoGlacierProtocol
https://github.com/vogelito/CryptoGlacierProtocol
https://github.com/vogelito/CryptoGlacierProtocol
https://github.com/vogelito/CryptoGlacierProtocol

There will also be a package that will need to be shared with the other signatories containing:

• 3xN Master Public Keys – each is an alphanumeric string used in the multisignature protocol of

Bitcoin, Litecoin, and Bitcoin Cash.

• N Ethereum account addresses – each is a hex string designating the Ethereum account to be

used as a signatory when setting up the Gnosis MultiSignatureWallet.

• N Ripple addresses – each is an alphanumeric string designating the XRP account to be used as

a signatory when setting up the Ripple Multi-Signing account.

• The Ethereum Multisig Smart Contract Address – a hex string designating the Ethereum contract

deployed using the Gnosis MultiSignatureWallet.

• The XRP Multisign Account – an alphanumeric string designating the Multi-Signing XRP account.

Technical details: The CryptoGlacier protocol reuses Ethereum and Ripple addresses but uses HD wallets

for Bitcoin, Bitcoin Cash, and Litecoin.

Protocol Cost
The CryptoGlacier protocol requires over $600 in equipment per key, and approximately 12 hours of work

divided in two different sessions to perform an initial cold storage deposit. This excludes time for:

• Obtaining equipment

• Printing documents

• Downloading files

• Physically storing the resulting keys

Subsequent deposits and withdrawals re-use the same equipment and take a fraction of the time.

No Formal Support
As a free, volunteer-developed community project, there is no formal support channel for CryptoGlacier

should you encounter any issues. However, you may be able to ask advice from Glacier’s community

members on their Gitter chat room (https://gitter.im/glacierprotocol/Lobby) or other Bitcoin or crypto

community forums.

Privacy Considerations
Because blockchains are public, the way you route and store funds has privacy implications. For

example, any person to whom you give your cold storage address for Ripple or Ethereum (because, for

example, they’re sending you funds which you want to keep in cold storage) can see your total cold

storage balance. This is easy to do with many free services (e.g. Etherscan (https://etherscan.io/)).

20/106

https://gitter.im/glacierprotocol/Lobby
https://gitter.im/glacierprotocol/Lobby
https://etherscan.io/
https://etherscan.io/

This is true not just of individuals, but entities. That is, any online wallet service which you use to send

funds to cold storage can see your cold storage balance, and may deduce that it belongs to you. They

may, of course, also choose to share this information with others.

If this is a concern for you, the easiest way to keep your cold storage balance private from a particular

entity is to route the payment through one (or more) intermediary addresses before sending it to your

cold storage address, with a few transactions going to each intermediate address. This does not provide

perfect privacy, but each intermediate address provides increasing levels of obfuscation and uncertainty.

CryptoGlacier utilizes HD wallets for Bitcoin, Litecoin, and Bitcoin Cash, thereby improving privacy over

the original Glacier protocol.

If privacy is very important to you, you might consider using a service like Shapeshift (https://

shapeshift.io/#/coins) to exchange your Bitcoins for a more anonymous cryptocurrency, such as Monero

(http://monero.org/), and then exchange them back to Bitcoins. However, this will cost you fees, and

more importantly, it requires you trust the operator of the exchange service not to steal or lose your

funds.

This guide (https://bitcoinnewsmagazine.com/how-to-use-monero-to-anonymize-bitcoin/) gives

additional detail about how to increase Bitcoin anonymity using Monero & Tor.

Lower-security Protocol Variants
If you are willing to accept lower security for lower cost, you can do so with only slight modifications:

1. Perform this protocol using only one quarantined computer. CryptoGlacier protocol repeats all

operations on two computers per signatory to detect defects or tampering in the key generation

process. However, this is costly and adds significantly to the labor required to execute the

protocol. The risks it mitigates are small: that malware conducting flawed key-generation attacks

found its way onto the eternally quarantined systems, or that the computer firmware was

tampered with at the manufacturer to include such malware. If you are willing to accept this risk,

you could skip buying the parallel hardware stack (and needing the second setup computer) and

skip the process of re-generating and verifying keys & transactions on the parallel hardware stack.

2. Use existing hardware. An even lower-security variant is to use nothing but existing laptops you

already possess, disabling all network connections during protocol execution, instead of

purchasing new quarantined hardware. This fails to protect against some malware attacks, but

provides additional savings in cost and effort. Such as an existing infection of a laptop’s firmware

(https://www.youtube.com/watch?v=sNYsfUNegEA), malware which overrides OS settings to

disable wireless connectivity, or certain undiscovered vulnerabilities in the software used by the

protocol.

These modifications are left as an exercise to the reader.

21/106

https://shapeshift.io/#/coins
https://shapeshift.io/#/coins
https://shapeshift.io/#/coins
https://shapeshift.io/#/coins
http://monero.org/
http://monero.org/
http://monero.org/
http://monero.org/
https://bitcoinnewsmagazine.com/how-to-use-monero-to-anonymize-bitcoin/
https://bitcoinnewsmagazine.com/how-to-use-monero-to-anonymize-bitcoin/
https://www.youtube.com/watch?v=sNYsfUNegEA
https://www.youtube.com/watch?v=sNYsfUNegEA
https://www.youtube.com/watch?v=sNYsfUNegEA
https://www.youtube.com/watch?v=sNYsfUNegEA

Out of scope
There’s always more one could do to increase security. While CryptoGlacier is designed to provide strong

protection for almost everyone, some situations (e.g. being the focus of a targeted attack by a

sophisticated, well-resourced criminal organization) are beyond its scope.

For some additional security precautions beyond those provided in the standard protocol, see the

possible improvements to CryptoGlacier.

2.2. Hardware required
Glacier has been written and tested around these specific equipment recommendations. We have used

similar equipment recommendations for CryptoGlacier.

Each signatory will need the following equipment:

Eternally quarantined hardware: Set 1
• Factory-sealed computer with 2 USB ports and a camera: 2016 Dell Inspiron 11.6” (http://a.co/

1E6HEQA)

• Two factory-sealed USB drives (2GB+) from the same manufacturer: SanDisk Cruzer 8GB (http://

a.co/1Us66ze).

We’ll be using two USB drives at the same time. If the computer has only one USB port, you’d need to use

a USB hub, which is a separate piece of USB hardware subject to malware infection of its firmware.

We’ll use the camera for reading QR codes.

Eternally quarantined hardware: Set 2
• Factory-sealed computer from a different manufacturer, also with 2 USB ports and a camera: Acer

Aspire One Cloudbook 11” (http://a.co/1ZMSB3Y)

• Two factory-sealed USB drives (2GB+) from the same manufacturer, but a different manufacturer

than the drives for Set 1: Verbatim 2GB (http://a.co/jdzEf8O)

Used/existing computing equipment
• Two computers with Internet connectivity, administrator access, at least 4GB RAM, and about 2GB

of free disk space. Each computer must be running Windows 10, macOS, or Linux. At the time of

writing there is poor support for Ubuntu in newer generation Macs (starting with 2016 models).

We do not recommend you use a Mac device released after 2015.

22/106

http://a.co/1E6HEQA
http://a.co/1E6HEQA
http://a.co/1E6HEQA
http://a.co/1E6HEQA
http://a.co/1Us66ze
http://a.co/1Us66ze
http://a.co/1Us66ze
http://a.co/1Us66ze
http://a.co/1ZMSB3Y
http://a.co/1ZMSB3Y
http://a.co/1ZMSB3Y
http://a.co/jdzEf8O
http://a.co/jdzEf8O

One of these two computers should be a computer that you do not own (unless purchased brand

new), or that has spent much time on your home or office network.

• Printer

• Smartphone with a working camera

Other Equipment
• Two factory-sealed USB drives (2GB+): Verbatim 2GB (http://a.co/jieluaE)

• Precision screwdrivers (http://a.co/bbvj16a), for removing WiFi cards from laptops

• Electrical tape (http://a.co/gZZiEdA)

• Casino-grade six-sided dice (http://a.co/ghbdiak). Regular dice are insufficient.

• Faraday bag (http://a.co/3wiNPLT). Used to prevent smartphone malware from stealing sensitive

data using radio frequencies (https://www.usenix.org/legacy/event/sec09/tech/full_papers/

vuagnoux.pdf).

• Table fan (http://a.co/98PrpMs). White noise can prevent malware on nearby devices from

stealing sensitive data using sound (https://www.wired.com/2016/06/clever-attack-uses-sound-

computers-fan-steal-data/).

• Home safe (http://a.co/6sRoaPv). Consider bolting it to your floor to deter theft.

• TerraSlate paper (http://a.co/7pk5fJN). Waterproof, heat resistant, and tear-resistant.

• Cardboard envelopes (http://a.co/7jUPLMR), for opacity

• Tamper-resistant seals (http://a.co/96KlsAl)

Notes
Standard software algorithms that generate random numbers, such as those used to generate Bitcoin

private keys, are vulnerable to exploitation (https://bitcoin.org/en/alert/2013-08-11-android), either due

to malware or algorithmic weakness (i.e. they often provide numbers that are not truly random). Dice

offer something closer to true randomness.

Casino dice are created specifically to remove any potential dice bias (square corners, filled in pips, low

manufacturing tolerance, etc.) That’s why casinos use them!

TerraSlate paper is extremely rugged, but you might also consider laminating the paper for additional

protection. You’ll need a thermal laminator (http://a.co/cZBN1YU) and laminating pouches (http://a.co/

ifISzje).

Jameson Lopp has also done extreme stress testing (https://medium.com/@lopp/metal-bitcoin-seed-

storage-stress-test-part-ii-d309e04aefeb) for metal seed storage devices.

23/106

http://a.co/jieluaE
http://a.co/jieluaE
http://a.co/bbvj16a
http://a.co/bbvj16a
http://a.co/gZZiEdA
http://a.co/gZZiEdA
http://a.co/ghbdiak
http://a.co/ghbdiak
http://a.co/3wiNPLT
http://a.co/3wiNPLT
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
http://a.co/98PrpMs
http://a.co/98PrpMs
https://www.wired.com/2016/06/clever-attack-uses-sound-computers-fan-steal-data/
https://www.wired.com/2016/06/clever-attack-uses-sound-computers-fan-steal-data/
https://www.wired.com/2016/06/clever-attack-uses-sound-computers-fan-steal-data/
https://www.wired.com/2016/06/clever-attack-uses-sound-computers-fan-steal-data/
http://a.co/6sRoaPv
http://a.co/6sRoaPv
http://a.co/7pk5fJN
http://a.co/7pk5fJN
http://a.co/7jUPLMR
http://a.co/7jUPLMR
http://a.co/96KlsAl
http://a.co/96KlsAl
https://bitcoin.org/en/alert/2013-08-11-android
https://bitcoin.org/en/alert/2013-08-11-android
http://a.co/cZBN1YU
http://a.co/cZBN1YU
http://a.co/ifISzje
http://a.co/ifISzje
http://a.co/ifISzje
http://a.co/ifISzje
https://medium.com/@lopp/metal-bitcoin-seed-storage-stress-test-part-ii-d309e04aefeb
https://medium.com/@lopp/metal-bitcoin-seed-storage-stress-test-part-ii-d309e04aefeb
https://medium.com/@lopp/metal-bitcoin-seed-storage-stress-test-part-ii-d309e04aefeb
https://medium.com/@lopp/metal-bitcoin-seed-storage-stress-test-part-ii-d309e04aefeb

2.3. Protocol structure
The overall CryptoGlacier protocol consists of several distinct subprotocols:

• Setup: Prepares hardware, and downloads and verifies needed software & documentation.

• Key Generation: Private keys are generated..

• Multisig Account Creation: Multisig wallets, contracts, and accounts are setup.

• Deposit: For securely storing crypto.

• Withdrawal: For transferring some or all of your stored funds to another crypto address.

• Viewing: For viewing the balance of your funds in secure storage.

• Maintenance: For ensuring funds in cold storage remain accessible and secure.

Sensitive Data
Critically-sensitive data (e.g. private keys) will be highlighted in red, like this: critically-sensitive-data-here

.

Critically sensitive data can be used by thieves to to steal your assets. If you follow the protocol

precisely, your critically sensitive data will remain secure.

Do not do anything with critically sensitive data that the protocol does not specifically instruct you to. In

particular:

• Never send it over email or instant messenger

• Never save it to disk (hard drive, USB drive, etc.)

• Never paste or type it into any non-eternally-quarantined device

• Never take a picture of it

• Never let any untrusted person see it

Moderately-sensitive data (e.g. a cold storage addresses or redemption script) will be highlighted in

yellow, like this: moderately-sensitive-data-here .

Moderately sensitive data impacts privacy, but does not directly impact security. It cannot be used to

steal your funds, but it can be used to see how much crypto you own (if someone knows that the

moderately sensitive data in question belongs to you).

It does indirectly impact security, in that if someone knows you own a lot of difficult-to-trace money, they

have some incentive to rob, extort, or attack you to get it.

The protocol recommends storing copies of moderately-sensitive data electronically, in a “conventionally

secure” manner (for example, in a password manager such as 1Password (https://1password.com/)).

This means that knowledge of your cold storage balances will be as secure as access to any accounts

which have their credentials stored in your password manager. For most people, this is sufficient.

24/106

https://1password.com/
https://1password.com/

If you use only hardcopies, you’ll need to manually type in a large amount of gibberish data, by hand, with

no errors, every time you withdraw funds from cold storage.

Terminal Usage
Many protocol steps involve typing commands into a terminal window. Working in a terminal window is

analogous to working under the hood of a car. It allows you to give the computer more precise

commands than you can through the regular interface.

Commands to be entered into a terminal window will be displayed in a fixed-width font like this:

The $ at the beginning of the line represents a terminal prompt, indicating readiness for user input. The

actual prompt varies depending on your operating system and its configuration; it may be $, > , or

something else. Usually the terminal will show additional information (such as a computer name, user ID

and/or folder name) preceding every prompt.

In the above example, the text splits across two lines because of the margins of this document. Each line

is not a separate command; it is all one command, meant to be entered all at once. This is clear because

there is no terminal prompt at the beginning of the second line. Proceed Carefully

If you encounter anything that is different from what the protocol says you should expect, the

recommendation is that you stop and seek help unless your expert opinion gives you high confidence

that you understand all possible causes and implications of the discrepancy.

In general, follow the protocol carefully, keep track of what step you are on, and double-check your

work. Any errors or deviations can undermine your security.

$ echo "everything after the $ could be copy-pasted into a terminal window"

25/106

3. Setup

26/106

3.1. Verify and print protocol
document
The Setup Protocol is used to prepare hardware, and download and verify needed software &

documentation.

The first thing we need to do is verify the integrity of the CryptoGlacier protocol document (the one you

are reading) to ensure that it has not been tampered with. After verifying the document, we’ll print a

hardcopy.

Printing is important, because a verified electronic copy will not be accessible at all times during

protocol execution due to reboots and other changes to the computing environment. Printing a hardcopy

ensures there is always a verified copy of the document available.

Each signatory will need to do the following:

1. Find a computer which has Internet access, printer access, and which you have permission to

install new software on. We’ll refer to this computer as the “SETUP 1” computer.

2. Review the errata for the version of Glacier you are using at https://github.com/vogelito/

CryptoGlacierProtocol/releases (https://github.com/vogelito/CryptoGlacierProtocol/releases).

3. Download the latest full release of CryptoGlacier (not just the protocol document) at https://

github.com/vogelito/CryptoGlacierProtocol/releases (https://github.com/vogelito/

CryptoGlacierProtocol/releases).

4. If your browser does not automatically extract the ZIP file contents into a folder within your

downloads directory, do so.

5. Rename the folder to “cryptoglacier”.

6. If you have used CryptoGlacier before, and you know you have the CryptoGlacier public key

imported into a local GPG keyring, skip the next step. (If you don’t know, that’s fine; proceed as

normal.)

7. Obtain the CryptoGlacier “public key,” used to cryptographically verify the protocol document.

If you are ever using CryptoGlacier in the future and notice that this step has changed (or that

this warning has been removed), there is a security risk. Stop and seek assistance.

a. Access CryptoGlacier’s Keybase profile at https://keybase.io/vogelito (https://keybase.io/

vogelito).

b. Click the string of letters and numbers next to the key icon.

c. In the pop-up that appears, locate the link reading “this key”.

d. Right-click the link and select “Save Link As…” or “Download Linked File As…”

e. Name the file “cryptoglacier.asc”.

27/106

https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://keybase.io/vogelito
https://keybase.io/vogelito
https://keybase.io/vogelito
https://keybase.io/vogelito

8. Download and install GnuPG (https://gnupg.org/), the software we’ll use for doing the

cryptographic verification. See tech details.

a. Windows: Download and install the latest available version of Gpg4win (https://

www.gpg4win.org/). Use the default options.

b. macOS: Download and install the latest available version of GPG Suite (https://

gpgtools.org/).

c. Linux: GnuPG comes pre-installed with Linux distributions.

9. Open a terminal window:

a. Windows: Press Windows-R, type “powershell” and click OK.

b. macOS: Click the Searchlight (magnifying glass) icon in the menu bar, and type a terminal

window. “terminal”. Select the Terminal application from the search results.

c. Linux: Varies; on Ubuntu, press Ctrl-Alt-T.

10. Change the terminal window’s active folder to your downloads folder. The commands below are

based on common default settings; if you put your downloads is in a different place, you will need

to customize this command.

a. Windows: > cd $HOME/Downloads/cryptoglacier

b. macOS: $ cd $HOME/Downloads/cryptoglacier

c. Linux: $ cd $HOME/Downloads/cryptoglacier

11. Verify the integrity of the downloaded document.

a. Import the CryptoGlacier public key into your local GPG installation:

b. Use the public key to verify that the Glacier “fingerprint file” is legitimate:

Expected output (timestamp will vary, but e-mail and fingerprint should match):

The warning message is expected, and is not cause for alarm.

$ gpg --import $HOME/Downloads/cryptoglacier.asc

$ gpg --verify SHA256SUMS.sig SHA256SUMS

gpg: Signature made Thu Jun 20 18:01:31 2019 CDT

gpg: using RSA key 3378240146B53C307FBA4B0D97F10485CCBACA30

gpg: Good signature from "Daniel Vogel <vogel@bitso.com>" [unknown]

gpg: aka "Daniel Vogel <dvogel@cs.stanford.edu>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 3378 2401 46B5 3C30 7FBA 4B0D 97F1 0485 CCBA CA30

28/106

https://gnupg.org/
https://gnupg.org/
https://www.gpg4win.org/
https://www.gpg4win.org/
https://www.gpg4win.org/
https://www.gpg4win.org/
https://gpgtools.org/
https://gpgtools.org/
https://gpgtools.org/
https://gpgtools.org/

c. Verify the fingerprints in the fingerprint file match the fingerprints of the downloaded

Glacier files.

i. On Linux or Mac:

Linux: $ sha256sum -c SHA256SUMS 2>&1

Mac: $ shasum -a 256 -c SHA256SUMS 2>&1

Expected output:

ii. On Windows 10:

Ensure that the hash output from the first command matches the output by the

second command. Upper/lower case doesn’t matter.

d. If you do not see the expected output, your copy of the document has not been verified.

Stop and seek assistance.

12. Switch to use the new document.

a. Open the version of the document that you just verified.

b. Close this window (of the unverified version of the document you had been using).

c. Delete the old, unverified copy of the document.

13. Print the verified document.

You are strongly encouraged to use the printed copy as a checklist, physically marking off each step as

you complete it. This reduces the risk of execution error by ensuring you don’t lose your place.

 CryptoGlacier.pdf: OK

 README.md: OK

 mnemonic_entropy.py: OK

 package.json: OK

 package-lock.json: OK

 setup.js: OK

 > Get-FileHash -a sha256 CryptoGlacier.pdf

 > cat SHA256SUMS | select-string -pattern "CryptoGlacier.pdf"

29/106

3.2. Prepare non-quarantined
hardware
Each signatory will need to do the following:

1. Select two (2) computers which will be used as “Setup Computers” to set up USB drives.

a. Both Setup Computers must have Internet access.

b. You should have administrator access to both Setup Computers.

c. Importantly, at least one computer should be a computer that you do not own, or that

doesn’t spend much time on your home or office network.

It’s not technically ownership that’s important. But computers you own are more likely to

run the same software, have visited the same websites, or have been exposed to the same

USB drives or networks – and therefore to have the same malware.

2. Using sticky notes, label the two Setup Computers “SETUP 1” and “SETUP 2”.

3. With a permanent marker, label two USB drives “SETUP 1 BOOT” and “SETUP 2 BOOT”.

a. Remember that, per the equipment list, each signatory should have 4 remaining USB drives

– two from one manufacturer, and two from a different manufacturer.

4. Run a virus scan on the Setup Computers. If you don’t have virus scanning software installed, here

are some options:

◦ Windows: Kaspersky (https://usa.kaspersky.com/) ($39.99/yr), Avira (https://

www.avira.com) (Free)

◦ macOS: BitDefender (https://www.bitdefender.com/) ($59.95/yr), Sophos (https://

home.sophos.com/) (Free)

◦ Linux: Unnecessary

5. If the virus scan comes up with any viruses, take steps to remove them.

6. Once you have a clean virus scan, your Setup Computers are ready.

3.3. Prepare quarantined
hardware
Each signatory should do the following:

1. Separate your quarantined hardware into two parallel sets. Each set should contain:

◦ One laptop

◦ Two USB drives from the same manufacturer

30/106

https://usa.kaspersky.com/
https://usa.kaspersky.com/
https://www.avira.com
https://www.avira.com
https://www.avira.com
https://www.avira.com
https://www.bitdefender.com/
https://www.bitdefender.com/
https://home.sophos.com/
https://home.sophos.com/
https://home.sophos.com/
https://home.sophos.com/

Each component should be supplied by different manufacturers from the other set. I.e. your two

laptops should be from two different manufacturers, and the USB drives in one set should be from

a different manufacturer than the USB drives in the other set.

2. In each set, label all hardware with a permanent marker. Write directly on the hardware.

a. Label the laptops (“Quarantined Computers”) “Q1” and “Q2”.

b. Label one USB drive from each set with “Q1 BOOT” or “Q2 BOOT”. These USBs will have the

operating system you’ll boot the computer with.

c. Label the other USB drive from each set with “Q1 APP” or “Q2 APP”. These USBs will have

the software applications you’ll use.

3. Labeled hardware should only be used with hardware that shares the same label (“Q1”, “Q2”, or

“SETUP 1”, or “SETUP 2”). For example:

a. Don’t plug a “Q1” USB drive into a “Q2” laptop.

b. Don’t plug a “SETUP 2” USB drive into a “Q1” or “Q2” laptop.

c. Don’t plug an unlabeled USB drive into a “Q1” or “Q2” laptop.

4. Quarantine the network and wireless interfaces for both laptops:

a. Unbox laptop. Do not power it on.

b. Put a tamper-resistant seal (https://www.amazon.com/Security-Warranty-Hologram-

Sequential-Numbering/dp/B0051JNB6A/ref=sr_1_1?

ie=UTF8&qid=1471760406&sr=8-1&keywords=tamper+resistant+stickers) over the

Ethernet port, if it has one.

c. Physically remove the wireless card.

i. For the recommended Dell laptop, Dell’s official instructions for doing so are here

(http://topics-cdn.dell.com/pdf/inspiron-11-3162-laptop_Service%20Manual_en-

us.pdf). A YouTube video showing an abbreviated procedure is here (https://

www.youtube.com/watch?v=nFYXQQPoh90).

ii. For the recommended Acer laptop, the process is similar to the Dell. Note there are

two cover screws hidden underneath rubber feet on the bottom of the laptop.

iii. For any other models, use YouTube to learn how to remove the wireless card.

d. After removing the wireless card, cover the ends of the internal WiFi antennae with

electrical tape.

e. If the computer has separate cards for WiFi and Bluetooth, be sure to remove both. (Most

modern laptops, including the recommended Acer and Dell, have a single wireless card

which handles both.)

5. Fully charge both laptops.

31/106

https://www.amazon.com/Security-Warranty-Hologram-Sequential-Numbering/dp/B0051JNB6A/ref=sr_1_1?ie=UTF8&qid=1471760406&sr=8-1&keywords=tamper+resistant+stickers
https://www.amazon.com/Security-Warranty-Hologram-Sequential-Numbering/dp/B0051JNB6A/ref=sr_1_1?ie=UTF8&qid=1471760406&sr=8-1&keywords=tamper+resistant+stickers
https://www.amazon.com/Security-Warranty-Hologram-Sequential-Numbering/dp/B0051JNB6A/ref=sr_1_1?ie=UTF8&qid=1471760406&sr=8-1&keywords=tamper+resistant+stickers
https://www.amazon.com/Security-Warranty-Hologram-Sequential-Numbering/dp/B0051JNB6A/ref=sr_1_1?ie=UTF8&qid=1471760406&sr=8-1&keywords=tamper+resistant+stickers
https://www.amazon.com/Security-Warranty-Hologram-Sequential-Numbering/dp/B0051JNB6A/ref=sr_1_1?ie=UTF8&qid=1471760406&sr=8-1&keywords=tamper+resistant+stickers
https://www.amazon.com/Security-Warranty-Hologram-Sequential-Numbering/dp/B0051JNB6A/ref=sr_1_1?ie=UTF8&qid=1471760406&sr=8-1&keywords=tamper+resistant+stickers
http://topics-cdn.dell.com/pdf/inspiron-11-3162-laptop_Service%20Manual_en-us.pdf
http://topics-cdn.dell.com/pdf/inspiron-11-3162-laptop_Service%20Manual_en-us.pdf
http://topics-cdn.dell.com/pdf/inspiron-11-3162-laptop_Service%20Manual_en-us.pdf
http://topics-cdn.dell.com/pdf/inspiron-11-3162-laptop_Service%20Manual_en-us.pdf
http://topics-cdn.dell.com/pdf/inspiron-11-3162-laptop_Service%20Manual_en-us.pdf
http://topics-cdn.dell.com/pdf/inspiron-11-3162-laptop_Service%20Manual_en-us.pdf
https://www.youtube.com/watch?v=nFYXQQPoh90
https://www.youtube.com/watch?v=nFYXQQPoh90
https://www.youtube.com/watch?v=nFYXQQPoh90
https://www.youtube.com/watch?v=nFYXQQPoh90

3.4. Create boot USBs
Because the eternally quarantined computers cannot connect to a network, they cannot download

software. We’ll be using USB drives to transfer the necessary software to them.

Each signatory should do the following:

We will prepare four bootable Ubuntu (https://en.wikipedia.org/wiki/Ubuntu_(operating_system)) USB

drives. (“Bootable” means that the Ubuntu operating system will be booted directly from the USB drive,

without using the computer’s hard drive in any way.)

The first two USB drives (“Setup Boot USBs”) are the USB drives you labeled “SETUP 1 BOOT” and

“SETUP 2 BOOT” in Section II. They will be prepared using your Setup Computers, which may be running

Windows, macOS, or something else.

The last two USB drives (“Quarantined Boot USBs”) are the USB drives you labeled “Q1 BOOT” and “Q2

BOOT” in Section II. They will be prepared using your Setup Computers while booted off a Setup Boot

USB.

Technical details: The Non-Quarantined OS USBs serve two purposes:

• First, they are used for creating the Quarantined App USBs in the next section, which greatly

simplifies the process of doing so because we know it’ll always be done from an Ubuntu

environment. (We can’t use the Quarantined OS USBs for this – they’re eternally quarantined, so

they need to be permanently unplugged from their Setup Computer the moment they are created.)

• Second, it will be harder for any malware infections on a Setup Computer’s default OS to

undermine a Quarantined USB setup process (the malware would first have to propagate itself to

the Non-Quarantined OS USB).

1. Perform the following steps on your SETUP 1 computer.

2. If you are not already reading this document on the SETUP 1 computer, open a copy there.

3. Download Ubuntu by going to this link:

http://old-releases.ubuntu.com/releases/xenial/ubuntu-16.04.1-desktop-amd64.iso (http://old-

releases.ubuntu.com/releases/xenial/ubuntu-16.04.1-desktop-amd64.iso) Wait until the

download is complete.

4. Open a terminal window.

a. Windows: Press Windows-R, type “powershell” and click OK.

b. macOS: Click the Searchlight (magnifying glass) icon in the menu bar, and type “terminal”.

Select the Terminal application from the search results.

c. Linux: Varies; on Ubuntu, press Ctrl-Alt-T. (On Ubuntu, press Ctrl-Alt-T.)

32/106

https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
http://old-releases.ubuntu.com/releases/xenial/ubuntu-16.04.1-desktop-amd64.iso
http://old-releases.ubuntu.com/releases/xenial/ubuntu-16.04.1-desktop-amd64.iso
http://old-releases.ubuntu.com/releases/xenial/ubuntu-16.04.1-desktop-amd64.iso
http://old-releases.ubuntu.com/releases/xenial/ubuntu-16.04.1-desktop-amd64.iso

5. Verify the integrity of the Ubuntu download.

a. Change the terminal window’s active folder to the folder where you downloaded Ubuntu,

customizing the folder name if necessary:

i. Windows: > cd $HOME/Downloads

ii. macOs: $ cd $HOME/Downloads

iii. Linux: $ cd $HOME/Downloads

b. View the fingerprint of the file:

i. Windows: > Get-FileHash -a sha256 ubuntu-16.04.1-desktop-amd64.iso

ii. macOs: $ shasum -a 256 ubuntu-16.04.1-desktop-amd64.iso

iii. Linux: $ sha256sum ubuntu-16.04.1-desktop-amd64.iso

c. The following fingerprint should be displayed:

It’s not important to check every single character when visually verifying a fingerprint. It’s

sufficient to check the first 8 characters, last 8 characters, and a few somewhere in the

middle.

Technical details: Because you verified the checksum & checksum signature for this

document in Section I, we are omitting the GPG verification of some other fingerprints in

the protocol. For a detailed security analysis, see the design document.

You can verify this is the official Ubuntu fingerprint here (http://releases.ubuntu.com/

16.04.1/SHA256SUMS), or follow Ubuntu’s full verification process using this guide.

6. Create the SETUP 1 BOOT USB.

a. Windows

i. Download the Rufus disk utility (https://rufus.akeo.ie/) and run it.

ii. Insert the SETUP 1 BOOT USB in an empty USB slot.

iii. In the “Device” dropdown at the top of the Rufus window, ensure the empty USB

drive is selected.

iv. Next to the text “Create a bootable disk using”, select “ISO Image” in the dropdown.

v. Click the CD icon next to the “ISO Image” dropdown.

vi. A file explorer will pop up. Select ubuntu-16.04.1-desktop-amd64.iso from your

downloads folder and click Open.

vii. Click Start.

viii. If prompted to download Syslinux software, click “Yes”.

ix. When asked to write in “ISO Image Mode (Recommended)” or “DD Image Mode”,

select “ISO Image Mode” and press OK.

 dc7dee086faabc9553d5ff8ff1b490a7f85c379f49de20c076f11fb6ac7c0f34

33/106

http://releases.ubuntu.com/16.04.1/SHA256SUMS
http://releases.ubuntu.com/16.04.1/SHA256SUMS
http://releases.ubuntu.com/16.04.1/SHA256SUMS
http://releases.ubuntu.com/16.04.1/SHA256SUMS
https://rufus.akeo.ie/
https://rufus.akeo.ie/

x. The program will take a few minutes to write the USB.

b. macOS

i. Prepare the Ubuntu download for copying to the USB.

ii. Determine the macOS “device identifier” for the Boot USB.

1. $ diskutil list

2. Insert the SETUP 1 BOOT USB in an empty USB slot.

3. Wait 10 seconds for the operating system to recognize the USB.

4. Once more: $ diskutil list

5. The output of the second command should include an additional section that

was not present in the first command’s output.

i. This section will have (external, physical) in the header.

ii. The first line of the section’s SIZE column should reflect the capacity

of the USB drive.

6. Make a note of the device identifier.

i. The device identifier is the part of the new section header that comes

before (external, physical) (for example /dev/disk2).

iii. Put Ubuntu on the SETUP 1 BOOT USB.

1. First, unmount the USB

2. Enter the following command, making sure to use the correct device

identifier; using the wrong one could overwrite your hard drive!

Example:

3. Enter your administrator password when requested.

4. Wait several minutes for the copying process to complete. When it does, you

may see an error box pop up. This is expected; it’s because the USB is written

in a format readable by Ubuntu, but not readable by macOS.

5. Click Ignore.

 $ cd $HOME/Downloads

 $ hdiutil convert ubuntu-16.04.1-desktop-amd64.iso -format

UDRW -o ubuntu-16.04.1-desktop-amd64.img

$ diskutil unmountDisk USB-device-identifier-here

$ sudo dd if=ubuntu-16.04.1-desktop-amd64.img.dmg \

of=USB-device-identifier-here bs=1m

$ sudo dd if=ubuntu-16.04.1-desktop-amd64.img.dmg \

of=/dev/disk2 bs=1m

34/106

iv. Verify the integrity of the SETUP 1 BOOT USB (i.e. no errors or malware infection).

1. Remove the USB drive from the USB slot and immediately reinsert it.

2. Wait 10 seconds for the operating system to recognize the USB.

3. You may see the same error box pop up again. Select Ignore.

4. The USB’s device identifier may have changed. Find it again:

5.

6.

7. Wait a few minutes for the verification process to complete.

8. If all goes well, the command will output no data, returning to your usual

terminal prompt.

9. If there is a discrepancy, you’ll see a message like:

If you see a message like this, STOP – this may be a security risk. Restart this

section from the beginning. If the issue persists, try using a different USB

drive or a different Setup Computer.

c. Ubuntu

i. If this is your first time using Ubuntu, note:

1. You can copy-paste text in most applications (e.g. Firefox) by pressing Ctrl-C

or Ctrl-V.

2. You can copy-paste text in a terminal window by pressing Ctrl-Shift-C or Ctrl-

Shift-V.

ii. Put Ubuntu on the SETUP BOOT 1 USB.

1. Open the Ubuntu search console by clicking the purple circle/swirl icon in the

upper-left corner of the screen.

2. Type “startup disk creator” in the text box that appears

3. Click on the “Startup Disk Creator” icon that appears.

 $ diskutil list

 $ cd $HOME/Downloads

 $ sudo cmp -n `stat -f '%z' \

 ubuntu-16.04.1-desktop-amd64.img.dmg` \

 ubuntu-16.04.1-desktop-amd64.img.dmg \

USB-device-identifier-here

 ubuntu-16.04.1-desktop-amd64.img.dmg /dev/disk2

 differ: byte 1, line 1

35/106

4. The “Source disc image” panel should show the .iso file you downloaded. If

it does not, click the “Other” button and find it in the folder you downloaded it

to.

5. In the “Disk to use” panel, you should see two lines. They may vary from

system to system, but each line will have a device identifier in it, highlighted

in the example below.

6. Select the line containing SETUP 1 BOOT USB and make note of the disk

identifier (e.g. /dev/sdb).

7. Click “Make Startup Disk” and then click “Yes”.

8. Wait a few minutes for the copying process to complete.

iii. Verify the integrity of the SETUP 1 BOOT USB (i.e. no errors or malware

1. On your desktop, right-click the corresponding USB drive icon in your dock

and select Eject from the pop-up menu.

2. Remove the USB drive from the USB slot and immediately re-insert it.

3. Wait 10 seconds for the operating system to recognize the USB.

4.

5.

6. If prompted for a password, enter the computer’s root password.

7. Wait a few minutes for the verification process to complete.

8. If all goes well, the command will output no data, returning to your usual

terminal prompt.

9. If there is an issue, you’ll see a message like:

If you see a message like this, STOP – this may be a security risk. Restart this

section from the beginning. If the issue persists, try using a different USB

drive or a different Setup Computer.

 Generic Flash Disk (/dev/sda)

 Kanguru Flash Trust (/dev/sdb)

 $ cd $HOME/Downloads

 $ sudo cmp -n `stat -c '%s' \

 ubuntu-16.04.1-desktop-amd64.iso` \

ubuntu-16.04.1-desktop-amd64.iso USB-device-identifier-here

 ubuntu-16.04.1-desktop-amd64.iso /dev/sda differ:

 byte 1, line 1

36/106

7. Create the Q1 BOOT USB We do not recommend you boot Ubuntu on Mac devices released after

2015. Ubuntu support for newer generation Macs and vice-versa is still very poor at the time of

writing and you might find your mouse, keyboard, or network to be unusable.

a. Boot the SETUP 1 computer from the SETUP 1 BOOT USB.

i. Reboot the computer.

ii. Press your laptop’s key sequence to bring up the boot device selection menu. (Some

PCs may offer a boot device selection menu; see below.)

1. PC: Varies by manufacturer, but is often F12 or Del. The timing may vary as

well; try pressing it when the boot logo appears.

i. On the recommended Dell laptop, press F12. You should see a

horizontal blue bar appear underneath the Dell logo.

ii. The recommended Acer laptop does not have a boot menu. See below

for instructions.

2. Mac: When you hear the startup chime, press and hold Option (⌥).

iii. Select the proper device to boot from.

1. PC: Varies by manufacturer; option will often say “USB” and/or “UEFI”.

i. On the recommended Dell laptop, select “USB1” under “UEFI

OPTIONS”.

ii. The recommended Acer laptop does not have a boot menu. See below

for instructions.

2. Mac: Click the “EFI Boot” option and then click the up arrow underneath it.

You do not need to select a network at this time. If more than one identical

“EFI boot” option is shown, you may need to guess and reboot if you pick the

wrong one.

iv. Some laptops don’t have a boot device selection menu, and you need to go into the

BIOS configuration and change the boot order so that the USB drive is first.

1. On the recommended Acer laptop:

i. Press F2 while booting to enter BIOS configuration.

ii. Navigate to the Boot menu.

iii. Select USB HDD, and press F6 until it is at the top of the list.

iv. Press F10 to save and automatically reboot from the USB.

v. If the computer boots into its regular OS rather than presenting you with a boot

device or BIOS configuration screen, you probably pressed the wrong button, or

waited too long.

1. Hold down your laptop’s power button for 10 seconds. (The screen may turn

black sooner than that; keep holding it down.)

2. Turn the laptop back on and try again. Spam the appropriate button(s)

repeatedly as it boots.

37/106

3. If the computer boots immediately to where it left off, you probably didn’t

hold down the power button long enough.

vi. You’ll see a menu that says “GNU GRUB” at the top of the screen. Select the option

“Try Ubuntu without installing” and press Enter.

vii. The computer should boot into the USB’s Ubuntu desktop.

b. Enable WiFi connectivity.

i. Click the cone-shaped WiFi icon near the right side of the menu bar.

ii. If the dropdown says “No network devices available” at the top, you need to enable

your networking drivers:

1. Click on “System Settings”. It’s the gear-and-wrench icon along the left side of

the screen.

2. A System Settings window will appear. Click the “Software & Updates” icon.

3. A Software & Updates window will appear. Click the “Additional Drivers” tab.

4. In the Additional Drivers tab, you’ll see a section for a Wireless Network

Adapter. In that section, “Do not use the device” will be selected. Select any

other option besides “Do not use the device.””

5. Click “Apply Changes”.

6. Click the cone-shaped WiFi icon near the right side of the menu bar again.

There should be a list of WiFi networks this time.

iii. Select your WiFi network from the list and enter the password.

c. Repeat steps 1-6 using the SETUP 1 computer to create the Q1 BOOT USB rather than the

SETUP 1 BOOT USB.

i. The instruction to plug a Quarantined Boot USB into your Setup computer should

raise a red flag for you, because you should never plug a quarantined USB into

anything other than the quarantined computer it is designated for!

This setup process is the ONE exception.

ii. Because you have booted the SETUP 1 computer off the SETUP 1 BOOT USB, you

will follow the instructions for Ubuntu, even if your computer normally runs Windows

or macOS.

iii. Immediately after you are finished executing steps 1-6 with the Q1 BOOT USB,

remove the Q1 BOOT USB from the SETUP 1 computer.

1. On your desktop, right-click the corresponding USB drive icon in your dock

and select Eject from the pop-up menu.

2. Remove the USB drive from the USB slot.

iv. The Q1 BOOT USB is now eternally quarantined. It should never again be plugged

into anything besides the Q1 computer.

8. Create the SETUP 2 BOOT USB and Q2 BOOT USB

a. Repeat steps 1-7 using the SETUP 2 computer, SETUP 2 BOOT USB, and Q2 BOOT USB.

38/106

3.5. Create App USBs
Each signatory should do the following:

We will prepare two (2) “Quarantined App USB” drives with the software needed to execute the remainder

of the protocol. These are the USB drives you labeled “Q1 APP” and “Q2 APP” in Section III.

1. Boot the SETUP 1 computer off the SETUP 1 BOOT USB if it is not already. (See the instructions in

Section III for details.)

2. Insert the Q1 APP USB into the the SETUP 1 computer.

a. The instruction to plug a Quarantined App USB into your Setup computer should raise a

red flag for you, because you should never plug a quarantined USB into anything other

than the quarantined computer it is designated for!

This setup process is the ONE exception.

3. Press Ctrl-Alt-T to open a terminal window.

4. Download the CryptoGlacier protocol document and accompanying scripts

a. Download the latest full release of CryptoGlacier (not just the protocol document) at

https://github.com/vogelito/CryptoGlacierProtocol/releases (https://github.com/vogelito/

CryptoGlacierProtocol/releases).

b. Unpack the CryptoGlacier ZIP file into a staging area.

i. When the download starts, Firefox will ask you if you want to open the ZIP file with

Archive Manager. Click OK.

When the ZIP file download completes, it will be opened with Archive Manager.

ii. There will be a single entry in a list named “CryptoGlacierProtocol- version-here ”,

where version-here is replaced with the current version number (like “v0.02”). Click

on that and then click the “Extract” button.

iii. The Archive Manager will ask you where you want to extract the ZIP file to. Select

“Home” on the left panel and then press the extract button.

iv. When the Archive Manager is finished extracting the ZIP archive it will ask you what

to do next. Click “Show the Files”.

v. Rename the unzipped folder from “CryptoGlacierProtocol- version-here ” to

“cryptoglacier”.

c. Obtain the CryptoGlacier “public key,” used to cryptographically verify the CryptoGlacier

document and CryptoGlacierScript.

39/106

https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases

If you are ever using CryptoGlacier in the future and notice that this step has changed (or

that this warning has been removed), there is a security risk. Stop and seek assistance.

i. Access CryptoGlacier’s Keybase profile at https://keybase.io/vogelito (https://

keybase.io/vogelito).

ii. Click the string of letters and numbers next to the key icon.

iii. In the pop-up that appears, locate the link reading “this key”.

iv. Right-click the link and select “Save Link As…”

v. Name the file “cryptoglacier.asc”.

d. Verify the integrity of the CryptoGlacier download.

i. Import the CryptoGlacier public key into your local GPG installation:

ii. Switch to the cryptoglacier folder:

iii. Use the public key to verify that the CryptoGlacier “fingerprint file” is legitimate:

Expected output (timestamp will vary, but e-mail and fingerprint should match):

The warning message is expected, and is not cause for alarm.

iv. Verify the fingerprints in the fingerprint file match the fingerprints of the downloaded

CryptoGlacier files:

Expected output:

$ gpg --import ~/Downloads/cryptoglacier.asc

$ cd ~/cryptoglacier

$ gpg --verify SHA256SUMS.sig SHA256SUMS

gpg: Signature made Thu Jun 20 18:01:31 2019 CDT

gpg: using RSA key 3378240146B53C307FBA4B0D97F10485CCBACA30

gpg: Good signature from "Daniel Vogel <vogel@bitso.com>" [unknown]

gpg: aka "Daniel Vogel <dvogel@cs.stanford.edu>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: 3378 2401 46B5 3C30 7FBA 4B0D 97F1 0485 CCBA CA30

$ sha256sum -c SHA256SUMS 2>&1

40/106

https://keybase.io/vogelito
https://keybase.io/vogelito
https://keybase.io/vogelito
https://keybase.io/vogelito

5. Open the CryptoGlacier protocol document so that it is available for copy-pasting terminal

commands.

6. Install the remaining application software on the Q1 APP USB.

a. Configure our system to enable access to the software we need in Ubuntu’s “package

repository”.On Ubuntu 16.04.01 there is a bug (https://bugs.launchpad.net/ubuntu/

+source/appstream/+bug/1601971) in Ubuntu’s package manager that affects systems

running off a bootable Ubuntu USB. The commands in steps a and b are a workaround.

i.

ii.

iii.

iv.

v.

b. Download and perform integrity verification of software available from Ubuntu’s package

repository:

▪ libappindicator1 and libindicator7: Dependencies for multisigweb (see below)

▪ nodejs and npm: Required to run the cryptoglacierscript

▪ qrencode: Used for creating QR codes to move data off quarantined computers

▪ zbar-tools: Used for reading QR codes to import data into quarantined computers

CryptoGlacier.pdf: OK

README.md: OK

mnemonic_entropy.py: OK

package.json: OK

package-lock.json: OK

setup.js: OK

 $ sudo mv /var/cache/app-info/xapian/default \

 /var/cache/app-info/xapian/default_old

 $ sudo mv /var/cache/app-info/xapian/default_old \

 /var/cache/app-info/xapian/default

 $ sudo apt-add-repository universe

 $ curl -sSL \

 https://deb.nodesource.com/gpgkey/nodesource.gpg.key \

 | sudo apt-key add -

 $ echo "deb https://deb.nodesource.com/node_10.x xenial main" \

 | sudo tee /etc/apt/sources.list.d/nodesource.list

 $ echo "deb-src https://deb.nodesource.com/node_10.x xenial \

 main" | sudo tee -a /etc/apt/sources.list.d/nodesource.list

 $ sudo apt-get update

41/106

https://bugs.launchpad.net/ubuntu/+source/appstream/+bug/1601971
https://bugs.launchpad.net/ubuntu/+source/appstream/+bug/1601971
https://bugs.launchpad.net/ubuntu/+source/appstream/+bug/1601971
https://bugs.launchpad.net/ubuntu/+source/appstream/+bug/1601971

▪ multisigweb: Used to manage multi-location multisig cold wallets for ETH and

ERC20 token

Make sure the output of $ sha256sum multisigweb-1.6.0-amd64.deb.zip is:

Unzip:

▪ Electrum: Used to manage multi-location multisig cold wallets

Import the signing keys

Verify the file

 $ sudo apt-get -y install \

 libindicator7=12.10.2+16.04.20151208-0ubuntu1 \

 libappindicator1=12.10.1+16.04.20170215-0ubuntu1 \

 nodejs=10.18.1-1nodesource1 \

 qrencode=3.4.4-1 \

 zbar-tools=0.10+doc-10ubuntu1

 $ mkdir ~/dls

 $ cd ~/dls

 $ wget https://github.com/gnosis/MultiSigWallet/releases/

download/v1.6.0/multisigweb-1.6.0-amd64.deb.zip

607e1e94cb5d4d9deb2b05eb0d9f6aaa6a41eaba531b3333dea5da90e2f29350

 $ unzip multisigweb-1.6.0-amd64.deb.zip

 $ wget https://download.electrum.org/3.3.6/electrum-3.3.6-

x86_64.AppImage

 $ wget https://download.electrum.org/3.3.6/electrum-3.3.6-

x86_64.AppImage.asc

 $ wget https://raw.githubusercontent.com/spesmilo/electrum/

3.3.6/pubkeys/ThomasV.asc

 $ gpg --import ThomasV.asc

 $ gpg --verify electrum-3.3.6-x86_64.AppImage.asc

electrum-3.3.6-x86_64.AppImage

42/106

You should see something similar to (verify fingerprint matches):

▪ ElectronCash: Used to manage multi-location multisig cold wallets

Import the signing keys

Make sure the output of $ sha256sum -c SHA256.Electron-Cash-4.0.6-

x64_64.AppImage.txt is:

Verify the signatures

 gpg: Signature made Thu 16 May 2019 06:14:30 PM UTC using

RSA key ID 7F9470E6

 gpg: Good signature from "Thomas Voegtlin (https://

electrum.org) <thomasv@electrum.org>"

 gpg: aka "ThomasV <thomasv1@gmx.de>"

 gpg: aka "Thomas Voegtlin

<thomasv1@gmx.de>"

 gpg: WARNING: This key is not certified with a trusted

signature!

 gpg: There is no indication that the signature

belongs to the owner.

 Primary key fingerprint: 6694 D8DE 7BE8 EE56 31BE D950

2BD5 824B 7F94 70E6

 $ wget https://github.com/Electron-Cash/Electron-Cash/

releases/download/4.0.6/Electron-Cash-4.0.6-x86_64.AppImage

 $ wget https://github.com/Electron-Cash/keys-n-hashes/raw/

master/sigs-and-sums/4.0.6/win-linux/Electron-Cash-4.0.6-

x86_64.AppImage.asc

 $ wget https://github.com/Electron-Cash/keys-n-hashes/raw/

master/sigs-and-sums/4.0.6/win-linux/SHA256.Electron-Cash-4.0.6-

x64_64.AppImage.txt

 $ gpg --import <(curl -L https://raw.githubusercontent.com/

fyookball/keys-n-hashes/master/pubkeys/jonaldkey2.txt)

 Electron-Cash-4.0.6-x86_64.AppImage: OK

 $ gpg --verify Electron-Cash-4.0.6-x86_64.AppImage.asc

Electron-Cash-4.0.6-x86_64.AppImage

43/106

You should see something similar to (verify fingerprint matches):

▪ Electrum-LTC: Used to manage multi-location multisig cold wallets

Import signing keys from keyserver

You should see something similar to

Verify that the fingerprints are correct

 gpg: Signature made Thu 06 Jun 2019 02:46:52 PM UTC using

DSA key ID EFF1DDE1

 gpg: Good signature from "Jonald Fyookball

<jonf@electroncash.org>"

 gpg: WARNING: This key is not certified with a trusted

signature!

 gpg: There is no indication that the signature

belongs to the owner.

 Primary key fingerprint: D56C 110F 4555 F371 AEEF CB25

4FD0 6489 EFF1 DDE1

 $ wget https://electrum-ltc.org/download/electrum-ltc-3.3.6.1-

x86_64.AppImage

 $ wget https://electrum-ltc.org/download/electrum-ltc-3.3.6.1-

x86_64.AppImage.asc

 $ gpg --keyserver pool.sks-keyservers.net --recv-keys

0x6fc4c9f7f1be8fea 0xfe3348877809386c

 gpg: requesting key F1BE8FEA from hkp server pool.sks-

keyservers.net

 gpg: requesting key 7809386C from hkp server pool.sks-

keyservers.net

 gpg: key F1BE8FEA: public key "pooler

<pooler@litecoinpool.org>" imported

 gpg: key 7809386C: public key "Adrian Gallagher

<thrasher@addictionsoftware.com>" imported

 gpg: no ultimately trusted keys found

 gpg: Total number processed: 2

 gpg: imported: 2 (RSA: 2)

 $ gpg --fingerprint 0x6fc4c9f7f1be8fea 0xfe3348877809386c

44/106

You should see:

Verify signature of downloaded files

You should see something like:

▪ BIP39: Used to manage multi-location multisig cold wallets

Make sure the output of $ sha256sum bip39-standalone.html is:

 pub 2048R/F1BE8FEA 2013-07-21

 Key fingerprint = CAE1 092A D355 3FFD 21C0 5DE3

6FC4 C9F7 F1BE 8FEA

 uid pooler <pooler@litecoinpool.org>

 sub 2048R/A31415A6 2013-07-21

 pub 2048R/7809386C 2013-06-19

 Key fingerprint = 59CA F0E9 6F23 F537 4794 5FD4

FE33 4887 7809 386C

 uid Adrian Gallagher

<thrasher@addictionsoftware.com>

 sub 2048R/6FB978EE 2013-06-19

 $ gpg --verify electrum-ltc-3.3.6.1-x86_64.AppImage.asc

electrum-ltc-3.3.6.1-x86_64.AppImage

 gpg: Signature made Wed 22 May 2019 07:07:53 AM UTC using

RSA key ID F1BE8FEA

 gpg: Good signature from "pooler

<pooler@litecoinpool.org>"

 gpg: WARNING: This key is not certified with a trusted

signature!

 gpg: There is no indication that the signature

belongs to the owner.

 Primary key fingerprint: CAE1 092A D355 3FFD 21C0 5DE3

6FC4 C9F7 F1BE 8FEA

 $ wget https://github.com/iancoleman/bip39/releases/download/

0.3.11/bip39-standalone.html

45/106

c. Copy that software to the Q1 APP USB.

i. Create a folder for the application files that will be moved to the USB:

ii. Copy the software into the apps folder:

iii. Copy the contents of the apps folder to the Q1 APP USB:

1. Click on the File Manager icon in the launching dock:

2. Navigate to the “Home” folder.

3. Click and drag “apps” folder to the icon representing the USB drive on the left

panel.

7. Install the required packages for the CryptoGlacier scripts and install CryptoGlacier on the Q1 APP

USB.

a. Install the required packages for the node script:

b. Copy the cryptoglacier folder to the Q1 APP USB.

i. Click on the File Manager icon in the launching dock along the left side of the

screen.

ii. Find the “cryptoglacier” folder under “Home”.

iii. Click and drag the cryptoglacier folder to the icon representing the USB drive on the

left.

iv. You may get errors related to copying rlp , sha.js , and uuid . You can safely

skip those

v. If you see a different “Error while copying” pop-up, you may be suffering from this

Ubuntu bug (https://bugs.launchpad.net/ubuntu/+source/nautilus/+bug/1021375).

To fix it, do the following and then retry copying the files:

954691257c7ab59175de365688e3bc7c1112e1392d308c1b97336b23854fe397

 $ mkdir ~/apps

 $ cp /var/cache/apt/archives/*.deb ~/apps

 $ cp ~/dls/electrum-3.3.6-x86_64.AppImage ~/apps

$ cp ~/dls/Electron-Cash-4.0.6-x86_64.AppImage ~/apps

 $ cp ~/dls/electrum-ltc-3.3.6.1-x86_64.AppImage ~/apps

 $ cp ~/dls/bip39-standalone.html ~/apps

 $ cp ~/dls/multisigweb-1.6.0-amd64.deb ~/apps

$ cd ~/cryptoglacier

$ npm install

46/106

https://bugs.launchpad.net/ubuntu/+source/nautilus/+bug/1021375
https://bugs.launchpad.net/ubuntu/+source/nautilus/+bug/1021375
https://bugs.launchpad.net/ubuntu/+source/nautilus/+bug/1021375

1. $ mv ~/.config/nautilus ~/.config/nautilus-bak

1. Log out of Ubuntu: Click the power icon in the top right of the screen and

select “logout” from the drop-down menu.

2. Login again with user “ubuntu” and leave the password blank.

8. Click on the USB drive icon to verify that it has the correct files. The contents should look like this

Click the apps folder. It will have the following content:

Click the cryptoglacier folder. It will have the following content:

9. Eject and physically remove the Q1 APP USB from the SETUP 1 computer.

The Q1 APP USB is now eternally quarantined. It should never again be plugged into anything

besides the Q1 computer.

 apps

 cryptoglacier

 bip39-standalone.html

 Electron-Cash-4.0.6-x86_64.AppImage

 electrum-3.3.6-x86_64.AppImage

 electrum-ltc-3.3.6.1-x86_64.AppImage

 libappindicator1_12.10.1+16.04.20170215-0ubuntu1_amd64.deb

 libdbusmenu-gtk4_16.04.1+16.04.20160927-0ubuntu1_amd64.deb

 libindicator7_12.10.2+16.04.20151208-0ubuntu1_amd64.deb

 libqrencode3_3.4.4-1_amd64.deb

 libzbar0_0.10+doc-10ubuntu1_amd64.deb

 multisigweb-1.6.0-amd64.deb

 nodejs_10.18.1-1nodesource1_amd64.deb

 qrencode_3.4.4-1_amd64.deb

 zbar-tools_0.10+doc-10ubuntu1_amd64.deb

 node_modiules

 CryptoGlacier.pdf

 LICENSE

 mnemonic_entropy.py

 package.json

 package-lock.json

 README.md

 setup.js

 SHA256SUMS

 SHA256SUMS.sig

47/106

10. Repeat all above steps using the SETUP 2 computer, SETUP 2 BOOT USB, and Q2 APP USB.

11. Find a container in which to store all of your labeled hardware, along with the CryptoGlacier

document hardcopy, when you are finished.

3.6. Prepare quarantined
workspaces
Each signatory must always prepare a quarantined workspace before executing the Key Generation,

Deposit or Withdrawal protocols. If you are executing the Setup Protocol for the first time and do not

plan on executing the Key Generation, Deposit or Withdrawal protocol now, you can stop here.

1. Block side channels

Side-channel attacks (https://en.wikipedia.org/wiki/Side-channel_attack) are a form of electronic

threat based on the physical nature of computing hardware (as opposed to algorithms or their

software implementations). Side channel attacks are rare, but it’s relatively straightforward to

defend against most of them.

a. Visual side channel

i. Ensure that no humans or cameras (e.g. home security cameras, which can be

hacked) have visual line-of-sight to the Quarantined Computers.

ii. Close doors and window shades.

b. Acoustic side channel (https://en.wikipedia.org/wiki/Acoustic_cryptanalysis)

i. Choose a room where sound will not travel easily outside.

ii. Shut down nearby devices with microphones (e.g. smartphones and other laptops).

iii. Plug in and turn on a table fan to generate white noise.

c. Power side channel (http://sharps.org/wp-content/uploads/CLARK-ESORICS13.pdf)

i. Unplug both Quarantined Computers from the wall.

ii. Run them only on battery power throughout this protocol.

iii. Make sure they are fully charged first! If you run out of battery, you’ll need to start

over.

d. Radio (https://cyber.bgu.ac.il/how-leak-sensitive-data-isolated-computer-air-gap-near-

mobile-phone-airhopper/) and other side channels. Including seismic (https://

www.cc.gatech.edu/fac/traynor/papers/traynor-ccs11.pdf), thermal (https://

cyber.bgu.ac.il/bitwhisper-heat-air-gap/), and magnetic (http://fc15.ifca.ai/preproceedings/

paper_14.pdf).

i. Turn off all other computers and smartphones in the room.

ii. Put portable computing devices in the Faraday bag and seal the bag.

iii. Unplug desktop computers.

2. Put your Q1 BOOT USB into an open slot in your Q1 computer.

48/106

https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Side-channel_attack
https://en.wikipedia.org/wiki/Acoustic_cryptanalysis
https://en.wikipedia.org/wiki/Acoustic_cryptanalysis
http://sharps.org/wp-content/uploads/CLARK-ESORICS13.pdf
http://sharps.org/wp-content/uploads/CLARK-ESORICS13.pdf
https://cyber.bgu.ac.il/how-leak-sensitive-data-isolated-computer-air-gap-near-mobile-phone-airhopper/
https://cyber.bgu.ac.il/how-leak-sensitive-data-isolated-computer-air-gap-near-mobile-phone-airhopper/
https://cyber.bgu.ac.il/how-leak-sensitive-data-isolated-computer-air-gap-near-mobile-phone-airhopper/
https://cyber.bgu.ac.il/how-leak-sensitive-data-isolated-computer-air-gap-near-mobile-phone-airhopper/
https://www.cc.gatech.edu/fac/traynor/papers/traynor-ccs11.pdf
https://www.cc.gatech.edu/fac/traynor/papers/traynor-ccs11.pdf
https://www.cc.gatech.edu/fac/traynor/papers/traynor-ccs11.pdf
https://www.cc.gatech.edu/fac/traynor/papers/traynor-ccs11.pdf
https://cyber.bgu.ac.il/bitwhisper-heat-air-gap/
https://cyber.bgu.ac.il/bitwhisper-heat-air-gap/
https://cyber.bgu.ac.il/bitwhisper-heat-air-gap/
https://cyber.bgu.ac.il/bitwhisper-heat-air-gap/
http://fc15.ifca.ai/preproceedings/paper_14.pdf
http://fc15.ifca.ai/preproceedings/paper_14.pdf
http://fc15.ifca.ai/preproceedings/paper_14.pdf
http://fc15.ifca.ai/preproceedings/paper_14.pdf

3. Boot off the USB drive. If you’ve forgotten how, refer to the procedure in Section IV.

4. Plug the Q1 APP USB into the Q1 computer

5. Copy the software from the Q1 computer’s RAM disk.

a. Click the File Manager icon from the launchpad on the left side of the screen.

b. Click on the App USB on the left of the file manager.

c. Drag the contents of the USB to the “Home” directory on the left side of file manager.

6. Open a copy of this document on the Q1 computer.

a. In the File Manager find the cryptoglacier folder. The PDF file for this document should be

visible with the name “CryptoGlacier.pdf”. Open it.

You won’t be able to click any external links in the document, since you don’t have a

network connection. If you need to look something up on the internet, do so in a distant

room. Do not remove devices from the Faraday bag before doing going to the other room.

7. Open a Terminal window by pressing Ctrl-Alt-T.

8. Install the application software on the Q1 computer’s RAM disk.

9. Prepare the AppImage files for execution

10. Change into the cryptoglacier directory. You’ll be using this directory to execute software for the

protocol

11. Prepare the “Quarantined Scratchpad” – an empty file you’ll use as a place to jot notes.

a. Click the “Search your computer” icon at the top of the launcher along the left side of the

screen.

b. Type “text editor”.

c. Click the Text Editor icon.

d. A blank window should appear.

12. Repeat the above steps using the Q2 computer, Q2 SETUP USB and Q2 APP USB.

 $ cd ~/apps

 $ sudo dpkg -i *.deb

 $ chmod +x ~/apps/electrum-3.3.6-x86_64.AppImage

 $ chmod +x ~/apps/Electron-Cash-4.0.6-x86_64.AppImage

 $ chmod +x ~/apps/electrum-ltc-3.3.6.1-x86_64.AppImage

$ cd ~/cryptoglacier

49/106

4. Key Generation

50/106

4.1. Generate BIP39
Mnemonic
The Key Generation Protocol will securely generate a BIP39 Mnemonic that will be used to store all your

assets.

Through the BIP39 (https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki) standard we will

create 24 words (a mnemonic) which will then be used to derive private keys across protocols. Each

signatory will only need to secure their 24-word phrase in order to be able to access funds .

By the end of this section, each signatory will generate the following information:

• A BIP39 Mnemonic : Also called a seed phrase, this is a 24-word combination that will later be

used to unlock your funds across BTC, BCH, LTC, XRP & ETH. Each seed phrase should be created

in a different device by a different signatory. In your M-of-N policy there should be N signatories

each with 1 seed phrase. These phrases should always be separated and signatories should

never see each other’s seed phrases.

• A Master public key for Bitcoin : An alphanumeric string to allow Electrum to generate the public

keys for the BTC cold HD wallet

• A Master public key for Litecoin : An alphanumeric string to allow Electrum-LTC to generate the

public keys for the LTC cold HD wallet

• A Master public key for Bitcoin Cash : An alphanumeric string to allow Electron-Cash to generate

the public keys for the BCH cold HD wallet

• An XRP address : Address to give ownership of an XRP multisign account

• An ETH address : Address to give ownership of an ETH multisig contract

Only quarantined hardware should be used during the execution of the Key Generation Protocol.

Signatories should not be in close proximity of each other when executing the Key Generation Protocol.

Signatory should always use distinct quarantined computers and should never ever share seed

phrases.

1. If this is not your first time working with CryptoGlacier:

a. Use a networked computer to access the latest full release of CryptoGlacier (not just the

protocol document) at https://github.com/vogelito/CryptoGlacierProtocol/releases

(https://github.com/vogelito/CryptoGlacierProtocol/releases).

b. Open the protocol document (CryptoGlacier.pdf) within the ZIP file.

c. Check the Release Notes (Appendix E) of the protocol document to see if there are any new

versions of CryptoGlacier recommended.

51/106

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases

d. Whether or not you decide to upgrade, review the errata for the version of CryptoGlacier you

are using at https://github.com/vogelito/GlacierProtocol/releases (https://github.com/

vogelito/GlacierProtocol/releases).

2. Execute Section VI of the Setup Protocol to prepare your quarantined workspace.

3. Create entropy for private keys

Creating an unguessable private key requires entropy – random data. We’ll combine two sources

of entropy to generate our keys. This ensures securely random keys even if one entropy source is

somehow flawed or compromised to be less-than-perfectly random.

a. Generate dice entropy

i. Type “DICE ENTROPY” into both Quarantined Scratchpads.

ii. Roll 62 six-sided dice, shaking the dice thoroughly each roll. 62 dice rolls

corresponds to 160 bits of entropy. See the design document for details.

iii. If you are rolling multiple dice at the same time, read the dice left-to-right. This is

important. Humans are horrible at generating random data (http://journals.plos.org/

plosone/article?id=10.1371/journal.pone.0041531) and great at noticing patterns.

Without a consistent heuristic like “read the dice left to right”, you may

subconsciously read them in a non-random order (like tending to record lower

numbers first). This can drastically undermine the randomness of the data, and

could be exploited to guess your private keys.

iv. Manually enter the numbers into the Quarantined Scratchpad of ONLY ONE of the

quarantined computers. Put all rolls on the same line to create one line of 62

numbers . (It’s fine to add spaces for readability.)

b. Generate BIP39 seed phrase

i. Make sure you are in the ~/cryptoglacier folder :

ii. On the Q1 computer enter the following command to generate your BIP39 seed

phrase

iii. The script will prompt you to enter the 62-number line of dice entropy

iv. The script will output your cold storage data:

▪ Dice entropy

▪ Generated Computer entropy

▪ Final entropy

▪ BIP39 Mnemonic

▪ Bitcoin Master Public Key

▪ Litecoin Master Public Key

$ cd ~/cryptoglacier

$ node setup.js --init

52/106

https://github.com/vogelito/GlacierProtocol/releases
https://github.com/vogelito/GlacierProtocol/releases
https://github.com/vogelito/GlacierProtocol/releases
https://github.com/vogelito/GlacierProtocol/releases
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041531
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041531
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041531
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041531

▪ Bitcoin Cash Master Public Key

▪ Ethereum Address

▪ Ethereum Private Key

▪ Ripple Address

▪ Ripple Private Key

Example output:

v. Type “COMPUTER ENTROPY” into both computers’ Quarantined Scratchpads. (This

is a descriptive heading to keep your notes organized and minimize risk of error.)

vi. Copy-paste the Generated Computer entropy into the Quarantined Scratchpad.

vii. Manually enter the Generated Computer entropy into the Quarantined Scratchpad

on the other quarantined computer.

c. Verify the integrity of the cold storage data

If there are discrepancies in any of the verification steps, please restart the protocol. If

discrepancies continue, please DO NOT PROCEED and seek assistance.

i. On the Q2 computer enter the following command:

1. The script will prompt you to enter the 62-number dice entropy and the

Generated computer entropy .

2. Verify that the BIP39 Mnemonic shown in the terminal window is identical on

both computers.

Make sure you carefully verify every word.

There are attack vectors which could replace just a portion of BIP39 seed

phrase, making the private keys easier to brute force, so it’s important to

check them thoroughly.

Dice entropy: 1111 1111 1111 1111 1111 1111 1111

Generated Computer entropy: aaaa aaaa aaaa aaaa aaaa aaaa aaaa

Final entropy: ae29155ab1b3f5a1fc0c7cee883cd39457d273b9eb5eb6ac16a

BIP39 Mnemonic: purchase emerge find gloom dismiss

Bitcoin Master Public Key (Zpub): Zpub75EpZYVWcoTQ1WChsnabzLUAm91t379iNBPM647HvyuXg2

Litecoin Master Public Key (Zpub): Zpub75CcoXN1LVH6qE3MNYAAbd8f6c3pgJC8aT1L8crzZTifZQc

BitcoinCash Master Public Key (xpub): xpub6BjfaUaRAzkDfaYWKGNDxewXDUpgkJdPTB7jo4hcDfFG5Qw

Ethereum Address: 0x6bff50edf67a2eae30e9eef7007b31292405ab2d

Ethereum Private Key: 0xB31B0A016562839D6D6D137489924C56566312DD0167B197

Ripple Address: rHzjZTF4nD1ta2oPz7EYvYKXx26n8ZKFUv

Ripple private key: F477BA0925608BCBBF870078E17030DB132CBD7D3286B305A6

$ node setup.js --check

53/106

ii. On the Q2 computer enter the following command:

1. The script will prompt you to enter the 62-number dice entropy and the

Generated computer entropy .

Example output of the python script:

2. Verify that the Generated Entropy string shown in the terminal window is

identical to the Final entropy string shown in the node script terminal output

of the Q1 Computer.

iii. On the Q2 computer open bip39-standalone.html

1. Check the Show entropy details checkbox

2. Copy the Generated Entropy output of the python script into the Entropy

box in Firefox and verify that the BIP39 seed matches that of the node script

terminal output of the Q1 Computer.

Example output in the BIP39 Mnemonic section in Firefox:

Verify every word of the BIP39 Mnemonic so it matches the output of the

scripts on both computers.

3. In the Coin dropdown menu in Firefox, select ETH - Ethereum

i. Verify that the derived Ethereum address for the m/44'/60'/0'/0/0

Path matches the Ethereum address output of the script on the Q1

computer. (Case insensitive)

ii. Verify that the derived Ethereum Private Key for the m/44'/60'/0'/

0/0 Path matches the Ethereum Private Key output of the script on

the Q1 computer. (Case insensitive)

For the Ethereum private key, verify each character. Again, there are

attack vectors which could replace just a portion of private keys,

making the private keys easier to brute force so it’s important to check

them thoroughly. For Ethereum, both the private key and the address

ARE NOT case sensitive.

$ python mnemonic_entropy.py entropy --integrity

Generated Entropy (copy this string into bip39-standalone.html):

$ firefox ~/apps/bip39-standalone.html

purchase emerge find gloom dismiss special usual moon update

54/106

4. In the Coin dropdown menu in Firefox, select XRP - Ripple

i. Verify that the derived Ripple address for the m/44'/144'/0'/0/0

Path matches the Ripple address output of the script on the Q1

computer.

ii. Verify that the derived Ripple Private Key for the

m/44'/144'/0'/0/0 Path matches the Ripple Private Key output of

the script on the Q1 computer.

For the Ripple private key, verify each character. Again, there are

attack vectors which could replace just a portion of private keys,

making the private keys easier to brute force so it’s important to check

them thoroughly.

iv. On the Q2 computer open Electrum

1. Leave default_wallet and click Next .

2. Select Multi-signature wallet and click Next .

3. Select your M-of-N policy. The top bar, cosigners is the N and the lower

bar, Required signatures is the M . Click Next .

4. Select I already have a seed and click Next .

5. Click on Options , select BIP39 seed and click OK .

6. Enter your BIP39 seed phrase and click Next .

7. Leave native segwit multisig (p2wsh) selected and click Next .

8. Verify that the Master Public Key is the same as the output of the script on

the Q1 computer.

Again, please make sure you verify each character.

9. Close the window (click on the top left x)

v. On the Q2 computer open Electrum-LTC

1. Leave default_wallet and click Next .

2. Select Multi-signature wallet and click Next .

3. Select your M-of-N policy. The top bar, cosigners is the N and the lower

bar, Required signatures is the M . Click Next .

4. Select I already have a seed and click Next .

5. Click on Options , select BIP39 seed and click OK .

6. Enter your BIP39 seed phrase and click Next .

7. Leave native segwit multisig (p2wsh) selected and click Next .

$ ~/apps/electrum-3.3.6-x86_64.AppImage

$ ~/apps/electrum-ltc-3.3.6.1-x86_64.AppImage

55/106

8. Verify that the Master Public Key is the same as the output of the script on

the Q1 computer.

Again, please make sure you verify each character.

9. Close the window (click on the top left x)

vi. On the Q2 computer open Electron-Cash

1. Leave default_wallet and click Next .

2. Select Multi-signature wallet and click Next .

3. Select your M-of-N policy. The top bar, cosigners is the N and the lower

bar, Required signatures is the M . Click Next .

4. Select I already have a seed and click Next .

5. Click on Options , select BIP39 seed and click OK .

6. Enter your BIP39 seed phrase and click Next .

7. Leave the default m/44'/145'/0' derivation path selected and click Next .

8. Verify that the Master Public Key is the same as the output of the script on

the Q1 computer.

Again, please make sure you verify each character.

9. Close the window (click on the top left x)

vii. On the Q2 computer open multisigweb

1. Agree to the Terms of Use and Privacy Policy

2. Select Light Wallet

3. Go to the Accounts tab and click Import

4. Click Browse... and go to Home -> cryptoglacier

5. Select the ethereum.json file and click Open

6. In the password field enter cryptoglacier

7. In the account name field enter anything you’d like, such as coolest

signatory

8. Click Import Account

9. Verify that the Ethereum Address is the same as the output of the script on

the Q1 computer.

Again, please make sure you verify each character.

10. Close the window (click on the top left x)

$ ~/apps/Electron-Cash-4.0.6-x86_64.AppImage

$ multisigweb

56/106

4.2. Transfer cold storage data
to paper
In this section, you’ll move the cold storage data you generated in Section I from the quarantined

computing environments onto physical paper. This will be done using a combination hand transcription

and QR codes (https://en.wikipedia.org/wiki/QR_code).

Each signatory will need to do the following:

1. Transfer the BIP39 Mnemonic to paper.

a. Write the 24-word BIP39 Mnemonic on a piece of TerraSlate paper.

i. Do not write anything else on the paper unless specifically instructed (such as

“Bitcoin”, “CryptoGlacier”, “private key”, etc.) In the event the key is seen by someone

untrustworthy or stolen by a random thief, such clues help them understand the

significance of the key and give them an incentive to plot further thefts or attacks.

ii. Transcribe by hand. Do not use QR codes or any other method to transfer.

iii. Seed phrases are not case-sensitive.

iv. Write clearly.

1. Use care to distinguish between “l” (lower-case “L”) and “I” (upper case “i”)

2. Use care to distinguish between “u” and “v”

3. Use care to distinguish between “U” and “v”

b. Double-check that you transcribed all 24 words in the BIP39 Mnemonic correctly. If you

make a mistake, you’ll have to redo a lot of work.

c. Manually count that you have transcribed 24 words.

d. Label each page with:

i. Today’s date

ii. Your initials

iii. The version of CryptoGlacier used (listed on the front page of this document) Do not

write “CryptoGlacier”, simply the version of CryptoGlacier used (e.g. 0.94.1)

iv. Write down the chosen M-of-N configuration

2. Visually hide all critically sensitive data.

We’ll be using a smartphone with a live Internet connection to read QR codes from the

quarantined computer screens. Any malware (or a malicious QR reader app) could steal sensitive

data if it is not visually hidden.

This step is important. Failing to execute it properly creates a substantial security risk.

a. Put your handwritten BIP39 Mnemonic out of sight (don’t just turn them face down; paper

is not completely opaque). This prevents a smartphone camera from accidentally seeing

them.

57/106

https://en.wikipedia.org/wiki/QR_code
https://en.wikipedia.org/wiki/QR_code

b. Delete all text from the Quarantined Scratchpad on the Q1 and Q2 computers.

c. On the Q1 computer Quarantined Scratchpad:

i. Copy-paste the following items from the node script’s terminal window output:

▪ Bitcoin Master Public Key

▪ Litecoin Master Public Key

▪ Bitcoin Cash Master Public Key

▪ Ethereum Address

▪ Ripple Address

ii. Double check that only the items above are included in the Scratchpad.

iii. No really, triple check that.

iv. Enable line wrapping so the entire contents can be seen.

1. With the Quarantined Scratchpad window active, go to the menu bar at the

top of the screen.

2. Select Edit.

3. Select Preferences.

4. Select the View tab.

5. Uncheck “Do not split words over two lines”.

d. On the Q2 computer close Firefox.

e. Clear the terminal windows on the Q1 and Q2 computers.

3. QR reader setup

a. Remove a smartphone from the Faraday bag and turn it on.

b. If the smartphone doesn’t already have a QR code reader on it, install one.

Any reader is fine as long as it can read all types of QR codes, but here are recommendations

we’ve tested with Glacier: iOS (https://itunes.apple.com/us/app/qr-reader-for-iphone/

id368494609?mt=8), Android (https://play.google.com/store/apps/details?

id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en).

4. Transfer the Bitcoin Master Public Key to a non-quarantined computer.

a. On the Q1 computer, display the Bitcoin Master Public Key as a QR code on the screen:

b. Use the smartphone’s QR code reader to read the QR code . When the QR code is

successfully read, the smartphone should display the text version of the Bitcoin Master

Public Key .

c. Verify the Bitcoin Master Public Key address on the smartphone matches the Bitcoin

Master Public Key in the Quarantined Scratchpad.

$ clear

$ cd ~/cryptoglacier

$ eog bitcoin_master_public_key.png

58/106

https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en

If it does not match, do not proceed. Try using a different QR reader application or

restarting the Deposit Protocol. Seek assistance if discrepancies persist.

d. Use the smartphone to send the Bitcoin Master Public Key to yourself using a messaging

app which you’ll be able to access from a laptop (e.g. Whatsapp, Slack, etc..). When

sending the message, add “B” as an identifier to the message. This is an indication that

the Public Key belongs to Bitcoin. (E-mail is not recommended for security reasons.)

e. Take a picture of the QR Code

f. Use the smartphone to send the QR Code picture to yourself using a messaging app which

you’ll be able to access from a laptop. Also use the identifier “B”. (E-mail is not

recommended for security reasons.)

g. Close the program displaying the QR code (click on the top left x)

5. Repeat the previous step for the following:

◦ Litecoin Master Public Key , stored in “litecoin_master_public_key.png”, with identifier “L”.

◦ Bitcoin Cash Master Public Key , stored in “bitcoincash_master_public_key.png”, with

identifier “BC”.

◦ Ethereum Address , stored in “ethereum_address.png”, with identifier “E”.

◦ Ripple Address , stored in “ripple_address.png”, with identifier “X”

6. Power down the smartphone and return it to the Faraday bag.

7. Shut down both quarantined computers entirely. As a precaution against side channel attacks, the

quarantined computers should not be active except when they absolutely need to be.

The recommended Acer laptop may require you to hold down the power button for several

seconds to complete the shutdown.

8. Create your Signatory Information Packet .

Using your setup (Internet-connected) computer:

a. Access the material you sent yourself from your smartphone previously. In total you should

have 10 pieces of information:

▪ Bitcoin Master Public Key (message “B”)

▪ Bitcoin Master Public Key QR Code (message “B”)

▪ Litecoin Master Public Key (message “L”)

▪ Litecoin Master Public Key QR Code (message “L”)

▪ Bitcoin Cash Master Public Key (message “BC”)

▪ Bitcoin Cash Master Public Key QR Code (message “BC”)

▪ Ethereum Address (message “E”)

▪ Ethereum Address QR Code (message “E”)

▪ Ripple Address (message “X”)

 $ sudo shutdown now

59/106

▪ Ripple Address QR Code (message “X”)

b. Open an empty document in any word processing application (Word, Pages, etc…) This will

be used to create the Signatory Information Packet .

c. Put the following information into the document:

i. Paste each message code followed by its corresponding QR-code and clear-text

version

ii. On the header:

▪ Type today’s date

▪ Your initials

▪ Type the version of CryptoGlacier used (listed on the first page of this

document)

▪ Write down the chosen M-of-N configuration

d. Do not put anything else in the document (such as “Bitcoin”, “CryptoGlacier”, “private key”,

etc.)

e. Print a copy of the Signatory Information Packet .

f. Share the contents of the Signatory Information Packet :

i. Save the document as a PDF .

ii. GPG encrypt the PDF file using your keys and the keys of every other signatory

(TODO: expand this).

iii. Electronically send the gpg-encrypted file to the other signatories

iv. You can also save an electronic copy of the PDF in a “conventionally secure”

location of your choosing. Most password managers include a way to securely store

files. Because the Signatory Information Packet contains moderately-sensitive data,

there are some privacy considerations with keeping an electronic copy of it. See the

Sensitive Data subsection for details.

v. Delete the unencrypted PDF from your computer

g. Shut down the computer. (It has a camera, and you will be working with critically sensitive

data in a moment.)

9. Prepare the temporary version of your Cold Storage Information Packet :

a. Put the handwritten BIP39 Mnemonic page along with one Signatory Information Packet

in its own opaque envelope. While this obviously won’t deter a determined thief, it makes it

quite difficult for a thief to steal a key without leaving evidence they have done so – and

noticing theft of a single key gives you a chance to move your funds away before the thief

can steal a second key.

b. Your Cold Storage Information Packet is incomplete because you still need to go through

the Multisig Account Creation Protocol

c. Once complete, each set of pages will be referred to as a Cold Storage Information Packet .

10. Immediate storage of Cold Storage Information Packet :

a. While the other signatories finish the Key Generation Protocol, we need to temporarily store

the Cold Storage Information Packet

60/106

b. Double-check to make sure the envelope contains a handwritten BIP39 Mnemonic page

and your Signatory Information Packet .

c. Seal the envelope

d. Use tamper-resistant seals in addition to the envelope’s normal adhesive to seal it.

e. Immediately put the Cold Storage Information Packet in the safest possible location in

your home or office that is immediately accessible.

f. No, really. Like right now. That’s basically one of the keys to a huge pile of cash you have

just sitting there in envelopes on your desk.

11. Hardware storage

a. Put tamper-resistant seals on the ends of all USB drives.

b. Close the quarantined laptops, and seal the screen shut with a tamper-resistant seal.

c. Store the hardware somewhere where it is unlikely to be used by accident.

12. It’s crucial that only a small amount of time goes by (e.g. a few days) between the execution of

the Key Generation Protocol and the Multisig Account Creation Protocol. Each of the signatory’s

Cold Storage Information Packet will go into long-term storage after the Multisig Account

Creation Protocol is executed.

61/106

5. Multisig Account
Creation

62/106

5.1. Create your Multisig
Accounts
In the next few sections we will create Multisig wallets for Bitcoin, Litecoin, and Bitcoin Cash. We will

also deploy a Multisig Contract for Ethereum and setup a Multisign Account for XRP.

Only one signatory needs to deploy the Ethereum Contract and setup the XRP Account. You should

agree with the other signatories who will be responsible for deploying the contract and setting up the

XRP account.

Also of note: setting up Ethereum and XRP will require a small amount of funds. The other coins can be

setup without any funds.

Before proceeding, every other signatory (N-1 of them) must have sent you their gpg-encrypted Signatory

Information Packets so you will have a total of N packets (your own included). Make sure you print every

Signatory Information Packet .

5.2. Create your Bitcoin,
Litecoin, and Bitcoin Cash
Multisig Wallets
In this section you’ll setup the Multisig Wallets for Bitcoin, Litecoin, and Bitcoin Cash. You will also verify

your deposit addresses.

Your Bitcoin, Litecoin, and Bitcoin Cash wallets are derived from your chosen M-of-N policy and the

Master Public Keys from the N signatories. The derivation is deterministic, so as long as you keep a

copy of the N Signatory Information Packets and you know the chosen M-of-N policy that was chosen,

you should be able to derive your wallets. In order to access your funds, you will need to know the M-of-N

policy that was chosen, N Master Public Keys , and at least M signatories should have access to their

BIP39 Mnemonic .

The following process can be done at an internet connected computer and should be verified across

signatories.

1. Derive Wallet Address Using Electrum

2. Open Electrum

 $ ~/apps/electrum-3.3.6-x86_64.AppImage

63/106

3. Select Auto connect and click Next .

4. Leave the default wallet name and click Next .

5. Select Multi-signature wallet and click Next .

6. Select your chosen M-of-N policy. The top bar, cosigners is the N and the lower bar, Required

signatures is the M . Click Next .

7. Select Use a master key and click Next .

8. You will be asked to enter your Bitcoin Master Public Key . For Bitcoin, this is marked as Message

B in your Signatory Information Packets . You can scan the QR Code or enter it manually. Click

Next twice.

9. Select Enter cosigner key and click Next .

10. You will now need to scan or enter the other N-1 Bitcoin Master Public Keys . These are all marked

with Message B on your Signatory Information Packets .

11. You don’t need to enter a password, just click Next .

12. Click on the Receive tab. This will show your receiving address which is basically your bitcoin

cold storage address .

13. Verify the Bitcoin cold storage address

14. Click on the QR Code

15. Use the smartphone’s QR code reader to read the QR Code . When the QR Code is successfully

read, the smartphone should display the text version of the bitcoin cold storage address .

16. Send this address to all your signatories and make sure they have derived the same address

across their devices.

17. If the verification fails, seek assistance

18. Repeat steps 1 and 2 for Litecoin and Bitcoin Cash

19. For Litecoin use the following program and the Message L keys:

20. For Bitcoin Cash use the following program and the Message BC keys:

Electron Cash calls master keys simply public or private keys

5.3. Create your Ethereum
Multisig Contract
In this section you will deploy an Ethereum Multisig Smart Contract based on the Gnosis Multisignature

Wallet Contract (https://github.com/gnosis/MultiSigWallet).

 $ ~/apps/electrum-ltc-3.3.6.1-x86_64.AppImage

 $ ~/apps/Electron-Cash-4.0.6-x86_64.AppImage

64/106

https://github.com/gnosis/MultiSigWallet
https://github.com/gnosis/MultiSigWallet
https://github.com/gnosis/MultiSigWallet

As a reminder, this section should only be executed by one agreed upon signatory. If you are not that

signatory, please skip this section.

5.4. Deploying the Contract
1. Download Multisigweb

2. On an internet enabled computer, download and install Gnosis Multisignature Wallet (https://

github.com/gnosis/MultiSigWallet/releases).

3. Please make sure you verify the SHA256 checksums. At the time of writing, v1.6.0 was the latest

version

4. Create a new Ethereum Account that will be used to deploy the contract

5. Open multisigweb

6. Agree to the Terms of Use and Privacy Policy

7. Select Light Wallet

8. Click on Accounts

9. Click on Add

10. Choose and confirm a password

11. Choose a name for the account (can be anything)

12. Click Create Account

13. Send funds to the account that was just created

14. Check the current gas prices at ethgasstation (https://ethgasstation.info/)

15. Multiply the gas price by 2,057,168 and divide by 10^18 to see how much ETH you will need to

deploy the contract. We recommend you send twice the amount from the calculation.

16. Click the Copy button next to the address created in the step above

17. Send the ETH (beyond the scope of this protocol) to the address above

18. Wait for the transaction to be confirmed, you should see the new balance on the top right section

of the screen, next to the account address.

19. Deploy new Multisig Wallet

20. Go the the Wallets tab

21. Click on Add

22. Select Create new wallet

23. Select a wallet name (can be anything)

24. Enter M (for your chosen M-of-N policy)

25. Leave daily limit at 0

26. Click on Remove so the address that deployed the contract does not have signatory rights over

the contract

27. Enter the Ethereum Addresses of the N signatories. You should have N Owners.

28. Click on Deploy with factory

29. You can check ethgasstation (https://ethgasstation.info/) to validate the gas price. Leave all the

other fields to their default.

65/106

https://github.com/gnosis/MultiSigWallet/releases
https://github.com/gnosis/MultiSigWallet/releases
https://github.com/gnosis/MultiSigWallet/releases
https://github.com/gnosis/MultiSigWallet/releases
https://ethgasstation.info/
https://ethgasstation.info/
https://ethgasstation.info/
https://ethgasstation.info/

30. Monitor Contract Deployment

31. Go to the Transactions tab

32. Wait for the transaction to be mined

33. If you go to the Wallets tab, you should now see your Multisig contract

34. Share your Ethereum Cold Wallet Address with the other signatories

35. Go to the Wallets tab

36. Click on Copy on the Address Column

37. Send to the Ethereum Cold Wallet Address to the other signatories.

5.5. Create your XRP Multisign
Account
In this section you will create a Ripple Multisign Account (https://xrpl.org/multi-signing.html).

CryptoGlacierScript has automated the process to set up Multi-Signing (https://xrpl.org/set-up-multi-

signing.html).

As a reminder, this section should only be executed by one agreed upon signatory. If you are not that

signatory, please skip this section.

1. On an internet enabled computer with CryptoGlacierScript already downloaded, run the multisign

account setup and follow the steps in the screen:

2. The script will output the Ripple Cold Storage Address

3. It will also output the Ripple Cold Storage Secret . Even though the secret should be disabled, it is

good practice to store it somewhere in case of an emergency.

4. Send to the Ripple Cold Storage Address to the other signatories.

5.6. Create Cold Storage
Information Packet
Only one signatory needs to execute this section. You should agree with the other signatories who will

be responsible for creating the Cold Storage Information Packet .

In this section you will create a Cold Storage Information Packet which will replace the N Signatory

Information Packets .

1. Open an empty document in any word processing application

$ node setup.js -m

66/106

https://xrpl.org/multi-signing.html
https://xrpl.org/multi-signing.html
https://xrpl.org/set-up-multi-signing.html
https://xrpl.org/set-up-multi-signing.html
https://xrpl.org/set-up-multi-signing.html
https://xrpl.org/set-up-multi-signing.html

2. Put the following information into the document:

a. On the header:

▪ Type today’s date

▪ Type the version of CryptoGlacier used (listed on the first page of this document)

▪ Write down the chosen M-of-N configuration

b. In the body of the document, write the following information. Pay attention to the order:

i. MESSAGE B

1. Insert the Bitcoin Master Public Key QR Code

2. Insert the Bitcoin Cold Storage Address for all N signatories

ii. MESSAGE L

1. Insert the Litecoin Master Public Key QR Code for all N signatories

2. Insert the Litecoin Cold Storage Address

iii. MESSAGE BC

1. Insert the Bitcoin Cash Master Public Key QR Code for all N signatories

2. Insert the Bitcoin Cash Cold Storage Address

iv. MESSAGE E

1. Insert the Ethereum Cold Storage Address

2. Insert the MultisigWeb Wallet Configuration

v. MESSAGE X

1. Insert the Ripple Cold Storage Address

3. gpg encrypt this document (TODO)

4. Send the gpg-encrypted document to all signatories

67/106

6. Deposit

68/106

6.1. Test deposit and
withdrawal
It’s important to make sure everything is working properly before proceeding. You’ll verify this by making

a token deposit to, and withdrawal from, your cold storage address on each of the protocols.

Depositing funds requires the Internet, and does not require handling any critically sensitive cold storage

data, so you can use any Internet-connected computer for this section.

1. Open your electronic copy of the Cold Storage Information Packet .

2. Perform a test deposit.

a. Use the wallet software or service of your choice to send a small transaction to your

bitcoin cold storage address .

i. Scan your bitcoin cold storage address QR Code from the Cold Storage Information

Packet into the wallet software.

b. Wait for the Bitcoin network to confirm the transaction at least once. The way you tell

whether a transaction has been confirmed varies depending on the software or service you

are using to send funds, but it should be displayed prominently.

3. Perform a test withdrawal.

a. Execute the Withdrawal Protocol to withdraw the remaining balance from cold storage to a

regular Bitcoin address of your choice.

b. Wait for the Bitcoin network to confirm the transaction at least once. (Instructions for doing

this are in the Withdrawal protocol.)

4. Repeat the above for Litecoin, Bitcoin Cash, Ether and XRP

6.2. Deposit execution
Depositing funds requires the Internet, and does not require handling any critically sensitive cold storage

data, so you can use any Internet-connected computer for this section.

You will need access to an electronic and paper copy of your Cold Storage Information Packet .

1. If you are depositing a large amount, consider making a small deposit as a test followed by a

second deposit for the remainder.

2. Verify cold storage address.

a. Get one of the paper Cold Storage Information Packets containing your cold storage

address.

69/106

b. Open your electronic copy of the Cold Storage Information Packet . If you’ve lost access to

it, you’ll need to recreate a new electronic copy by transcribing one of the hardcopies

(attached to each public key) by hand.

c. Visually verify that the cold storage addresses are identical in the electronic copy and

paper copy. This is to insure that the electronic copy was not damaged, hacked,

accidentally changed due to a typo, etc.

d. Return the paper Cold Storage Information Packet to its normal secure storage.

e. Confirm this deposit address with your signatories.

3. Perform the deposit.

a. Use the wallet software or service of your choice to prepare to send the desired amount of

funds to your cold storage address . Crypto networks require a fee to process transactions.

We recommend you use a wallet service that either covers the fees for you or recommends

a fee amount automatically, which most do.

Enter all necessary transaction information, but do not actually execute the transaction.

i. Copy-paste your cold storage address from the Cold Storage Information Packet

into the wallet software. You may also choose to scan the Cold storage address QR

Code

b. Double-check that the address you pasted or scanned matches the address in the Cold

Storage Information Packet and that confirmed by the other signatories. If you use the

wrong address, you will lose all of your funds with no recourse.

c. Execute the transaction.

4. Verify the deposit on the public blockchain.

a. Go to a block explorer, paste the address into the search bar, and press Enter. You’ll be

taken to a page that shows your cold storage address listed.

b. Within a couple of minutes (and often much faster), you should be able to refresh this page

and see your funds listed.

c. Periodically refresh the page until you see the funds moved from “Unconfirmed” to be

reflected in “Balance”. This generally happens within 15 minutes; if the network is unusually

congested, it may take longer.

Your funds are now secured in cold storage.

If this was your first deposit to this cold storage address , proceed to the next section. Otherwise, you

have completed the Deposit Protocol.

6.3. Store cold storage data
1. Shut down any nearby computers or smartphones, or other devices with cameras.

70/106

2. Immediate storage of Cold Storage Information Packets

a. Double-check to make sure each envelope contains a handwritten 24-word BIP39

Mnemonic and a Cold Storage Information Page .

b. Seal each envelope.

c. Use tamper-resistant seals in addition to the envelope’s normal adhesive to seal it.

d. Immediately put all Cold Storage Information Packets in the safest possible location in

your home or office that is immediately accessible.

e. No, really. Like right now. That’s basically a huge pile of cash you have just sitting there in

envelopes on your desk.

3. Hardware storage

a. Put tamper-resistant seals on the ends of all USB drives.

b. Close the quarantined laptops, and seal the screen shut with a tamper-resistant seal.

c. Store the hardware somewhere where it is unlikely to be used by accident.

4. Maintenance planning

5. Create a reminder for yourself in six months to execute the Maintenance Protocol . (If you don’t

have a reminder system you trust, find one on the web.)

6. Long-term storage of Cold Storage Information Packets

a. As soon as possible, transfer each Cold Storage Information Packet to its secure storage

location (e.g. safe deposit box).

b. Don’t put more than one packet in long-term storage in the same building! Signatories

should make sure that their respective keys are never stored in the same building, in the

same city, or in the same institution. Doing so increases the risk of losing access to your

funds in a disaster (e.g. fire) or thorough a thief/social attack.

c. Remember the following

i. Do not send your packets electronically – no e-mail, no photograph, no “secure

instant message”.

ii. Do not keep any related notes on or with the packets . In the event the key is seen by

someone untrustworthy or stolen by a random thief, such clues help them

understand the significance of the key and give them an incentive to plot further

thefts or attacks.

You have finished securing your cold storage funds.

71/106

7. Withdrawal

72/106

7.1. Preparation
The Withdrawal Protocol is used to transfer funds out of high-security cold storage.

In this first section, we’ll gather physical hardcopies of all information needed to do the withdrawal. This

is done with the help of a regular networked computer to find some of this information online and

translate it into printed QR codes.

On any Internet-connected computer:

1. If this is not your first time working with CryptoGlacier:

a. Use a networked computer to access the latest full release of CryptoGlacier (not just the

protocol document) at https://github.com/vogelito/CryptoGlacierProtocol/releases

(https://github.com/vogelito/CryptoGlacierProtocol/releases).

b. Open the protocol document (CryptoGlacier.pdf) within the ZIP file.

c. Check the Release Notes (Appendix E) of the protocol document to see if there are any new

versions of CryptoGlacier recommended.

d. Whether or not you decide to upgrade, review the errata for the version of Glacier you are

using at https://github.com/vogelito/CryptoGlacierProtocol/releases (https://github.com/

vogelito/CryptoGlacierProtocol/releases).

2. Open your electronic copy of the Cold Storage Information Packet .

7.2. Withdrawing Bitcoin,
Litecoin or BitcoinCash
In this section, we first construct a transaction, which we then pass to a quarantined environment for

signature, verify it, and then use QR codes to extract it from the quarantined environment to pass on to

additional quarantined environments (of the other signatories) for additional signatures and eventually

extract it for execution.

For brevity purposes, we will use Bitcoin and Electrum as an example, but this should be easily replicable

on Litecoin and Electrum-LTC or Bitcoin Cash and ElectronCash.

Building the Transaction
On any Internet-connected computer, set-up the Watch-Only Electrum Wallet (this setup can be re-used

from previous transactions):

1. Download and install Electrum (see prior steps for information on where to do it)

73/106

https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases
https://github.com/vogelito/CryptoGlacierProtocol/releases

2. Open Electrum

3. Select Auto connect and click Next

4. If you wish name this wallet and click Next

5. Select Multi-signature wallet and click Next

6. Select your M-of-N policy. The top bar, cosigners is the N and the lower bar, Required

signatures is the M . Click Next .

7. Select Use a master key and click Next

8. Scan your Bitcoin Master Public Key QR Code

9. Select Enter cosigner key and click Next

10. Scan the rest of the Bitcoin Master Public Key QR Codes

11. Do not enter a password, just click Next You should be able to see the balance in your bitcoin

cold storage address

12. Click on Send , enter the destination address and the amount

13. Click on Preview

14. Click on the QR Code icon

15. Print the QR Code. This is the transaction that will need to be signed by the Quarantined

computers of M signatories.

Signing the transaction
The following steps will need to be done by M signatories:

1. Gather required information

a. Make sure you have your Cold Storage Information Packets on hand (you’ll need the 24-

word BIP39 Mnemonic).

i. You will also need to coordinate with M-1 signatories who will in turn need their

Cold Storage Information Packets .

b. You should print the QR Code of the transaction to be signed.

2. Execute Section VI of the Setup Protocol to prepare your quarantined workspace.

3. Sign the transaction

On any of your Quarantined computers:

a. Import QR code data

i. Start Electrum

ii. Load the wallet and your key

1. Choose auto connect and click Next .

2. Choose whatever name for the wallet and click Next

3. Select Multi-signature wallet

 $ ~/apps/electrum-3.3.6-x86_64.AppImage

74/106

4. Select your M-of-N policy. The top bar, cosigners is the N and the lower

bar, Required signatures is the M . Click Next .

5. Select I already have a seed and click Next

6. Click on Options , select BIP39 seed and click OK .

7. Enter your BIP39 seed phrase and click Next .

8. Leave the default settings selected and click Next .

9. Click Next

10. Select Enter cosigner key

11. Use the QR Code reader to read the next signatories’ Bitcoin Master Public

Key QR Code

12. Repeat steps 9 to 11 for the other N-2 signatories

13. Do not enter a password and click Next

iii. Sign the Transaction

1. From the top bar menu, select Tools -> Load Transaction -> From QR

Code

2. Scan the printed QR Code of the transaction that needs signing

3. Verify that the outputs of the transaction make sense

i. You should see one output for the desired amount and destination.

ii. You will likely see a second output going to a change address

belonging to the same wallet. You can verify that the change

addresses belong to the wallet in the Addresses tab

4. Click on Sign

5. You should see the Status of the transaction, indicating how many

signatories have signed

4. Visually hide all critically sensitive data.

We’ll be using a smartphone with a live Internet connection to read QR codes from the

quarantined computer screens. Any malware (or a malicious QR reader app) could steal sensitive

data if it is not visually hidden.

This step is important. Failing to execute it properly creates a substantial security risk.

a. Put your Cold Storage Information Packets out of sight – this prevents a smartphone

camera from accidentally seeing them.

b. Make sure your BIP39 Mnemonic is nowhere to be seen in your Computer screen or in the

physical world.

5. Extract the signed transaction from the quarantined environment.

a. Remove a smartphone from the Faraday bag and turn it on.

b. Open your QR Reader App

c. On the Quarantined computer, display the signed transaction QR code by clicking the QR

Icon on the bottom left of the screen.

75/106

d. Use the smartphone’s QR code reader to read the QR code.

e. Take a picture of the QR code using the smartphone.

f. Send both the text version and the QR Code’s picture to the next signatory using a

messaging app which the signatory will be able to access from a laptop. If you are the last

signatory, send the contents to yourself

6. Shut down all quarantined computers entirely. As a precaution against side channel attacks, the

quarantined computers should not be active except when they absolutely need to be.

The recommended Acer laptop may require you to hold down the power button for several

seconds to complete the shutdown.

7. Repeat the steps above until M signatories have signed the transaction

a. The status of Electrum should change to Signed once all required signatories have

signed the transaction

Verifying and broadcasting the
transaction
On any Internet-connected computer, the last signatory should:

1. Access the QR Code of the fully signed transaction she previously sent herself.

2. Open the watch-only Bitcoin Electrum Wallet

3. Load the transaction

a. Click on Tools -> Load Transaction -> From QR Code

b. Scan the QR Code of the fully signed transaction

4. Under “Outputs”

a. Verify the destination address is correct.

b. Verify the amount going to the destination address is correct.

c. If you did not withdraw all funds from these unspent transactions, you’ll also see a second

output which “sends” the remainder of the funds “back” to your cold storage address . This

is necessary; it’s how Bitcoin is designed to operate.

5. Execute the transaction.

a. Click on Broadcast

b. You should see a Payment sent pop up with the Transaction ID

c. Copy-paste the Transaction ID

6. Verify the withdrawal on the public blockchain.

a. Go to blockchair (https://www.blockchair.com/), paste the Transaction ID into the search

bar, and press Enter.

 $ sudo shutdown now

76/106

https://www.blockchair.com/
https://www.blockchair.com/

b. Within a couple of minutes (and often much faster), you should be able to refresh this page

and see your transaction listed as “Unconfirmed”.

c. Periodically refresh the page until you see the funds moved from “Unconfirmed” to be

reflected in “Balance”. This generally happens within 15 minutes; if the Bitcoin network is

unusually congested, it may take longer.

d. You should be able to verify this in the Watch-Only Electrum wallet as well

7.3. Withdrawing Ethereum &
ERC20 Tokens
In this section, we construct a “signed transaction” in our quarantined environments, verify it, and then

use QR codes to extract it from the quarantined environment to pass on to additional quarantined

environments for additional signatures and eventually extract it for execution.

This protocol is divided into two sub-protocols: Proposing Transfers and Confirming Transfers. The flow

is one signatory will propose and the rest will confirm.

Gather the required information
Every signatory needs to execute this section

1. Make sure you have your Cold Storage Information Packets on hand (you’ll need the 24-word

BIP39 Mnemonic).

a. You will also need to coordinate with M-1 signatories who will in turn need their Cold

Storage Information Packets .

On any Internet-connected computer:

1. Find your current account’s Nonce

a. Navigate to etherscan.io (https://etherscan.io) and enter your Ethereum Public Address ,

also known as MESSAGE E on your Cold Storage Information Packet .

b. Find your last outgoing transaction and click on it, find the Nonce value and write it down

on a piece of paper. If there are no outgoing transactions, then record the number 0 .

2. Navigate to ethgasstation.info (https://ethgasstation.info) and record the recommended gas price

in Gwei on the same piece of paper

3. If you are Proposing A Transfer:

a. Install the required software (on a Mac, only required the first time):

 $ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/

Homebrew/install/master/install)"

 $ brew install qrencode

77/106

https://etherscan.io
https://etherscan.io
https://ethgasstation.info
https://ethgasstation.info

b. Create and print QR code with the destination address

i. On terminal

ii. Open the QR Code:

iii. Print the QR Code

c. If you are withdrawing from an ERC20 Token, make sure you repeat the step above for the

ERC20 Token Contract Address. You can find the ERC20 Contract Address on etherscan.io

Make sure you also note the Contract Decimals (usually 18) in the piece of paper.

d. On the same piece of paper carefully write down the amount of ETH or ERC20 Tokens that

you are withdrawing.

4. If you are Confirming a Transfer:

a. Obtain the Transfer ID:

i. Open multisigweb on an internet connected device

ii. Import the Ethereum Cold Wallet Address .

iii. Open the Wallet and navigate to the Multisig Transactions section

iv. Verify the details (amount + destination) of the Transfer you are looking to confirm

and write down on the piece of paper the ID (left-most column)

5. Finally, remember that each signatory’s Ethereum account will be making transactions on the

blockchain, so make sure each account has some ETH balance.

Proposing Transfers
Only one signatory needs to propose transfers. If a signatory has already proposed a transfer and you

need to confirm it, see section below on Confirming Transfers

Again, the following steps will need to be done by 1 signatories:

1. Execute Section VI of the Setup Protocol to prepare your quarantined workspace.

2. Create and sign the transaction

On the Q1 computer:

a. Create your ETH account keystore file

i. Execute the cryptoglacier script

ii. You will be prompted to enter your 24-word BIP39 Mnemonic

iii. If this is your first transaction, please see the “First transaction” section below

 $ qrencode -s 5 -o destination.png <ENTER_DESTINATION_ADDRESS>

 $ open destination.png

 $ node ~/cryptoglacier/setup.js --ether

78/106

iv. The script will write an ethereum.json file to your ~/cryptoglacier directory

b. Set the gas price on multisigweb

i. Start multisigweb

ii. Accept the TOS and Privacy Policy

iii. Select Light Wallet

iv. Click on Settings tab

v. Enter the gas price in Wei (multiply by 10^9)

vi. Under Wallet factory contract select Custom contract

vii. Click Update settings

viii. Exit the program (Upper left Menu, Application -> Quit)

c. Import your keystore file into multisigweb

i. Start multisigweb

ii. Click on Accounts tab

iii. Click on Import

iv. Select Browse and select the ethereum.json file in the cryptoglacier

directory

v. Enter cryptoglacier as your password

vi. Name the account as you wish

vii. Import Account

d. Import required data

i. Start the QR code reader

1. On Terminal, open a new tab with Ctrl+Shift+T

2. Start zbarcam

A window will appear with your laptop’s video feed.

ii. Scan the Ethereum Cold Wallet Address from your

Cold Storage Information Packet .

1. Hold the QR code up to the webcam

2. When a green square appears around the QR code on the video feed, it has

been successfully read.

3. Verify the decoded QR code is shown in the terminal window. Example:

 $ multisigweb

 $ multisigweb

 $ zbarcam

79/106

4. Copy-paste the data into the Quarantined Scratchpad under a “CONTRACT

ADDRESS” header

iii. Repeat the step above for the destination address QR code with a “DESTINATION

ADDRESS” header in the Quarantined Scratchpad

iv. If you are withdrawing an ERC20 Token, repeat the step above for the ERC20 Token

Contract Address QR code with a “TOKEN ADDRESS” header in the Quarantined

Scratchpad

e. Import your Wallet Contract into multisigweb

i. Click on Wallets tab

ii. Click on Add

iii. Select Restore deployed wallet and click Next

iv. Enter any name you wish and then copy the Ethereum Cold Wallet Address from

your Quarantined Scratchpad and click Ok

f. Create the transaction

i. Click on the Name of the Wallet

ii. For ETH Transactions

1. Click on Add next to Execute offline

2. Enter the Destination (from the Scratchpad) and the Amount (from the

piece of paper) and click Sign offline

iii. For ERC20 Transactions

1. Click the Add button in the Tokens section

2. Enter the “TOKEN ADDRESS” in the Address field

3. Enter any Symbol

4. Enter the Decimals from the piece of paper and click Ok

5. Scroll through the Tokens until you find the Symbol you just added. Click

Withdraw

6. Enter the Amount (from the piece of paper) and the Destination (from the

Scratchpad) and click Sign offline

iv. Enter the Nonce you recorded on the piece of paper and click Ok

v. Enter cryptoglacier as the password and click Ok

vi. You will receive the hex code. Select it and click Copy

g. Build the QR Code for the transaction

h. Display the QR Code

 QR-Code:0xe46295248fab5f8749af13eeea7021aec098c4ba

 $ qrencode -o tx.png [PASTE USING CTRL+SHIFT+V]

80/106

i. If this is your first transaction, please also display the QR Code for the first transaction

i. On Terminal, open a new tab with Ctrl+Shift+T

ii. Display the QR Code for the first transaction

3. Visually hide all critically sensitive data.

We’ll be using a smartphone with a live Internet connection to read QR codes from the

quarantined computer screens. Any malware (or a malicious QR reader app) could steal sensitive

data if it is not visually hidden.

This step is important. Failing to execute it properly creates a substantial security risk.

a. Put your Cold Storage Information Packets out of sight – this prevents a smartphone

camera from accidentally seeing them.

4. Extract the signed transaction from the quarantined environment.

a. QR reader setup

i. Remove a smartphone from the Faraday bag and turn it on.

ii. If the smartphone doesn’t already have a QR code reader on it, install one.

Any reader is fine as long as it can read all types of QR codes, but here are

recommendations we’ve tested with this protocol: iOS (https://itunes.apple.com/us/

app/qr-reader-for-iphone/id368494609?mt=8), Android (https://play.google.com/

store/apps/details?

id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en).

b. Transfer the signed transaction data to a non-quarantined computer.

i. Use the smartphone’s QR code reader to read the QR code.

ii. Visually inspect that the hex code is the same and send it to yourself using a

messaging app which you can access from a laptop.

5. Shut down the quarantined computer entirely. As a precaution against side channel attacks, the

quarantined computers should not be active except when they absolutely need to be.

The recommended Acer laptop may require you to hold down the power button for several

seconds to complete the shutdown.

6. Skip to the section “Broadcasting and verifying transactions” below

 $ eog tx.png

 $ eog tx0.png

 $ sudo shutdown now

81/106

https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en

Confirming Transfers
M-1 signatories need to confirm transfers. Only Transfers that have been proposed can be confirmed.

If you are a signatory and are looking to confirm a transfer:

1. Execute Section VI of the Setup Protocol to prepare your quarantined workspace.

2. Sign the confirmation transaction

On the Q1 computer:

a. Create your ETH account keystore file

i. Execute the cryptoglacier script

ii. You will be prompted to enter your 24-word BIP39 Mnemonic

iii. If this is your first transaction, please see the “First transaction” section below

iv. The script will write an ethereum.json file to your ~/cryptoglacier directory

b. Set the gas price on multisigweb

i. Start multisigweb

ii. Accept the TOS and Privacy Policy

iii. Select Light Wallet

iv. Click on Settings tab

v. Enter the gas price in Wei (multiply by 10^9)

vi. Under Wallet factory contract select Custom contract

vii. Click Update settings

viii. Exit the program (Upper left Menu, Application -> Quit)

c. Import your keystore file into multisigweb

i. Start multisigweb

ii. Click on Accounts tab

iii. Click on Import

iv. Select Browse and select the ethereum.json file in the cryptoglacier

directory

 $ node ~/cryptoglacier/setup.js --ether

 $ multisigweb

 $ multisigweb

82/106

v. Enter cryptoglacier as your password

vi. Name the account as you wish

vii. Import Account

d. Import required data

i. Start the QR code reader

1. On Terminal, open a new tab with Ctrl+Shift+T

2. Start zbarcam

A window will appear with your laptop’s video feed.

ii. Scan the Ethereum Cold Wallet Address from your

Cold Storage Information Packet .

1. Hold the QR code up to the webcam

2. When a green square appears around the QR code on the video feed, it has

been successfully read.

3. Verify the decoded QR code is shown in the terminal window. Example:

4. Copy-paste the data into the Quarantined Scratchpad under a “CONTRACT

ADDRESS” header

e. Import your Wallet Contract into multisigweb

i. Click on Wallets tab

ii. Click on Add

iii. Select Restore deployed wallet and click Next

iv. Enter any name you wish and then copy the Ethereum Cold Wallet Address from

your Quarantined Scratchpad and click Ok

f. Confirm the transaction

i. Click on the Name of the Wallet

ii. Click Confirm offline

iii. Enter the Transaction ID as written on the piece of paper and click Confirm

offline

iv. Enter the Nonce you recorded on the piece of paper and click Ok

v. Enter cryptoglacier as the password and click Ok

vi. You will receive the hex code. Select it and click Copy

g. Build the QR Code for the transaction

h. Display the QR Code

 $ zbarcam

 QR-Code:0xe46295248fab5f8749af13eeea7021aec098c4ba

 $ qrencode -o tx.png [PASTE USING CTRL+SHIFT+V]

83/106

i. If this is your first transaction, please also display the QR Code for the first transaction

i. On Terminal, open a new tab with Ctrl+Shift+T

ii. Display the QR Code for the first transaction

3. Visually hide all critically sensitive data.

We’ll be using a smartphone with a live Internet connection to read QR codes from the

quarantined computer screens. Any malware (or a malicious QR reader app) could steal sensitive

data if it is not visually hidden.

This step is important. Failing to execute it properly creates a substantial security risk.

a. Put your Cold Storage Information Packets out of sight – this prevents a smartphone

camera from accidentally seeing them.

4. Extract the signed transaction from the quarantined environment.

a. QR reader setup

i. Remove a smartphone from the Faraday bag and turn it on.

ii. If the smartphone doesn’t already have a QR code reader on it, install one.

Any reader is fine as long as it can read all types of QR codes, but here are

recommendations we’ve tested with this protocol: iOS (https://itunes.apple.com/us/

app/qr-reader-for-iphone/id368494609?mt=8), Android (https://play.google.com/

store/apps/details?

id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en).

b. Transfer the signed transaction data to a non-quarantined computer.

i. Use the smartphone’s QR code reader to read the QR code(s).

ii. Visually inspect that the hex code is the same and send it to yourself using a

messaging app which you can access from a laptop.

5. Shut down the quarantined computer entirely. As a precaution against side channel attacks, the

quarantined computers should not be active except when they absolutely need to be.

The recommended Acer laptop may require you to hold down the power button for several

seconds to complete the shutdown.

6. Follow the section “Broadcasting and verifying transactions” below

 $ eog tx.png

 $ eog tx0.png

 $ sudo shutdown now

84/106

https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en

Broadcasting and verifying transactions
On any Internet-connected computer:

1. Send the Transaction

a. Access the hex Code of the fully signed transaction you sent yourself from your

smartphone previously.

b. Open alpha.myetherwallet.com/pushTx (https://alpha.myetherwallet.com/pushTx) or

etherscan.io/pushtx (https://etherscan.io/pushtx) and paste the hex code in the Signed

Transaction box

c. Click on Send Transaction

d. Confirm the contents of the transaction and click Yes, I am sure! Make transaction.

e. Wait until the transaction gets into an ethereum block by checking etherscan.io (https://

etherscan.io)

2. Verify the transaction status by opening multisigweb on an internet connected device and

importing the Ethereum Cold Wallet Address

First Transaction
There is a known bug (https://github.com/gnosis/MultiSigWallet/issues/298) that prevents Multisigweb

from signing the very first ETH transaction which would have a nonce of zero. While Multisigweb is fixed,

setup.js script will prompt you to see if this is your first transaction. If this is your first transaction, the

script will create a tx0.png file that you will also need to extract from your quarantined environment

and broadcast to the network.

7.4. Withdrawing XRP
In this section, we construct a “signed transaction” in our quarantined environments, verify it, and then

use QR codes to extract it from the quarantined environment to pass on to additional quarantined

environments for additional signatures and eventually extract it for execution.

This protocol requires one signatory to Create a transaction and then M-1 signatories to Sign a

transaction.

85/106

https://alpha.myetherwallet.com/pushTx
https://alpha.myetherwallet.com/pushTx
https://etherscan.io/pushtx
https://etherscan.io/pushtx
https://etherscan.io
https://etherscan.io
https://etherscan.io
https://etherscan.io
https://github.com/gnosis/MultiSigWallet/issues/298
https://github.com/gnosis/MultiSigWallet/issues/298

Gather the required information
1. Make sure you have your Cold Storage Information Packets on hand (you’ll need the 24-word

BIP39 Mnemonic).

a. You will also need to coordinate with M-1 signatories who will in turn need their Cold

Storage Information Packets .

2. If you are the first signatory and will Create a transaction, then on any Internet-connected

computer:

a. Find your address’ sequence number

i. Navigate to https://xrpl.org/xrp-ledger-rpc-tool.html (https://xrpl.org/xrp-ledger-rpc-

tool.html), enter your Ripple Cold Storage Address and click Get info .

ii. On the Result section, expand the account_data information and record the

Sequence number on a piece of paper

b. On the same piece of paper carefully write down the amount of XRP that you are

withdrawing.

c. Create and print the QR codes with the Ripple Cold Storage Address and the destination

address

i. Install the required software (on a Mac, only required the first time). On terminal:

ii. Create the QR Code for the Ripple Cold Storage Address

iii. Open the QR Code and paste it in a word-editing doc under the header “SOURCE”

iv. Create the QR Code for the destination address

v. Open the QR Code and paste it in a word-editing doc under the header

“DESTINATION”

 $ /usr/bin/ruby -e "$(curl -fsSL https://

raw.githubusercontent.com/Homebrew/install/master/install)"

 $ brew install qrencode

 $ qrencode -s 5 -o source.png

<PASTE_RIPPLE_COLD_STORAGE_ADDRESS>

 $ open source.png

 $ qrencode -s 5 -o destination.png <PASTE_DESTINATION_ADDRESS>

 $ open destination.png

86/106

https://xrpl.org/xrp-ledger-rpc-tool.html
https://xrpl.org/xrp-ledger-rpc-tool.html
https://xrpl.org/xrp-ledger-rpc-tool.html
https://xrpl.org/xrp-ledger-rpc-tool.html

vi. Print the word editing doc

d. If the transfer requires a Destination Tag, please write it down carefully on the piece of

paper

3. If you are a signatory that will Sign a transaction, please make sure you write down on a piece of

paper

a. The Destination Address

b. The Destination TAG

c. The Transaction amount

Create a new Transaction
Only one signatory needs to create a new transaction. If another signatory has already created a

transaction and you need to sign over it, see section below on Sign a Transaction

Again, the following steps will need to be done by 1 signatories:

1. Execute Section VI of the Setup Protocol to prepare your quarantined workspace.

2. Create and sign the transaction

On the Q1 computer:

a. Import required data

i. Start zbarcam

A window will appear with your laptop’s video feed.

ii. Scan the destination address QR code

1. Hold the QR code up to the webcam

2. When a green square appears around the QR code on the video feed, it has

been successfully read.

3. Verify the decoded QR code is shown in the terminal window. Example:

4. Copy-paste the data into the Quarantined Scratchpad under a “DESTINATION

ADDRESS” header

b. Create Transaction

i. Execute the cryptoglacier script

 $ zbarcam

 QR-Code:r8HgVGenRTAiNSM5iqt9PX2D2EczFZhZr

 $ cd ~/cryptoglacier/

 $ node setup.js --xrp

87/106

ii. You will be prompted to enter your 24-word BIP39 Mnemonic

iii. The script will ask you a few questions and write a ripple_tx.png file to your ~/

cryptoglacier directory

c. Display the QR Code

3. Visually hide all critically sensitive data.

We’ll be using a smartphone with a live Internet connection to read QR codes from the

quarantined computer screens. Any malware (or a malicious QR reader app) could steal sensitive

data if it is not visually hidden.

This step is important. Failing to execute it properly creates a substantial security risk.

a. Put your Cold Storage Information Packets out of sight – this prevents a smartphone

camera from accidentally seeing them.

4. Extract the signed transaction from the quarantined environment.

a. QR reader setup

i. Remove a smartphone from the Faraday bag and turn it on.

ii. If the smartphone doesn’t already have a QR code reader on it, install one.

Any reader is fine as long as it can read all types of QR codes, but here are

recommendations we’ve tested with this protocol: iOS (https://itunes.apple.com/us/

app/qr-reader-for-iphone/id368494609?mt=8), Android (https://play.google.com/

store/apps/details?

id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en).

b. Transfer the signed transaction data to a non-quarantined computer.

i. Use the smartphone’s QR code reader to read the QR code.

ii. Visually inspect that the json is the same

iii. Take a picture of the QR code and send it to the next signatory using a messaging

app which they can access from a laptop.

5. Shut down the quarantined computer entirely. As a precaution against side channel attacks, the

quarantined computers should not be active except when they absolutely need to be.

The recommended Acer laptop may require you to hold down the power button for several

seconds to complete the shutdown.

Sign a Transaction
M-1 signatories need to sign the transaction.

 $ eog ripple_tx.png

 $ sudo shutdown now

88/106

https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en

If you are a signatory and are looking to sign a transfer:

1. Execute Section VI of the Setup Protocol to prepare your quarantined workspace.

2. Sign the confirmation transaction

On the Q1 computer:

a. Import required data

i. Start zbarcam

A window will appear with your laptop’s video feed.

ii. Scan the QR code you received from the prior signatory

1. Hold the QR code up to the webcam

2. When a green square appears around the QR code on the video feed, it has

been successfully read.

3. Verify the decoded QR code is shown in the terminal window. Example:

4. Copy-paste the data into the Quarantined Scratchpad under a “TX TO SIGN”

header

5. Inspect the transaction and make sure the following details are correct:

▪ Destination Tag

▪ Destination Address

▪ Amount

b. Execute the cryptoglacier script

i. You will be prompted to enter your 24-word BIP39 Mnemonic

 $ zbarcam

 QR-Code:{"Account":"rp3rEms99VB7uMyU8GnGyPmo6uejJ4XbEV","

Destination":"rp3rEms99VB7uMyU8GnGyPmo6uejJ4XbEV","Destina

tionTag":5,"Amount":"600000000","Sequence":

40,"TransactionType":"Payment","Fee":"100","SigningPubKey"

:"","Signers":[{"Signer":

{"Account":"rp3rEms99VB7uMyU8GnGyPmo6uejJ4XbEV","SigningPu

bKey":"0368C9DEE202196D3FFEA2A81F7BBAE8673775F54B286379F8E

7C3AB31B53B4666","TxnSignature":"304502FB6C45A46912E522100

E346752EF9E816D55F63F3F7FC010D80CFD1B0CEFD2672ACD7D562B575

125094E602200B6243B4575D044984A10020A9B26BDE2347E7AB8B7E07

6"}}]}

 $ cd ~/cryptoglacier/

 $ node setup.js --xrp

89/106

ii. The script will ask you a few questions, including to paste the “TX TO SIGN” and the

script will write a new ripple_tx.png file to your ~/cryptoglacier directory

c. Display the QR Code

3. Visually hide all critically sensitive data.

We’ll be using a smartphone with a live Internet connection to read QR codes from the

quarantined computer screens. Any malware (or a malicious QR reader app) could steal sensitive

data if it is not visually hidden.

This step is important. Failing to execute it properly creates a substantial security risk.

a. Put your Cold Storage Information Packets out of sight – this prevents a smartphone

camera from accidentally seeing them.

4. Extract the signed transaction from the quarantined environment.

a. QR reader setup

i. Remove a smartphone from the Faraday bag and turn it on.

ii. If the smartphone doesn’t already have a QR code reader on it, install one.

Any reader is fine as long as it can read all types of QR codes, but here are

recommendations we’ve tested with this protocol: iOS (https://itunes.apple.com/us/

app/qr-reader-for-iphone/id368494609?mt=8), Android (https://play.google.com/

store/apps/details?

id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en).

b. Transfer the signed transaction data to a non-quarantined computer.

i. Use the smartphone’s QR code reader to read the QR code.

ii. Visually inspect that the json is the same

iii. Take a picture of the QR code and send it to the next signatory using a messaging

app which they can access from a laptop. If you are the last signatory, send the json

contents to yourself using a messaging app that you can access from a laptop.

5. Shut down the quarantined computer entirely. As a precaution against side channel attacks, the

quarantined computers should not be active except when they absolutely need to be.

The recommended Acer laptop may require you to hold down the power button for several

seconds to complete the shutdown.

 $ eog ripple_tx.png

 $ sudo shutdown now

90/106

https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://itunes.apple.com/us/app/qr-reader-for-iphone/id368494609?mt=8
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en
https://play.google.com/store/apps/details?id=com.application_4u.qrcode.barcode.scanner.reader.flashlight&hl=en

Broadcasting the transactions
On any Internet-connected computer:

1. Send the Transaction

a. Access the final JSON of the fully signed transaction you sent yourself from your

smartphone previously.

b. Open xrpl.org/websocket-api-tool.html (https://xrpl.org/websocket-api-tool.html) and paste

the json string in the Request box

c. Click on Send request

2. Verify the transaction

a. You can check the result of your transaction by visiting bithomp (https://bithomp.com/

explorer/)

91/106

https://xrpl.org/websocket-api-tool.html
https://xrpl.org/websocket-api-tool.html
https://bithomp.com/explorer/
https://bithomp.com/explorer/
https://bithomp.com/explorer/
https://bithomp.com/explorer/

8. Balance and
maintenance

92/106

8.1. Check your balance
The Viewing Protocol is a simple procedure for viewing your balance of funds currently in one cold

storage address.

1. Open your electronic copy of the Cold Storage Information Page (see Section II for details). If

you’ve lost access to it, you’ll need to recreate a new electronic copy by transcribing one of the

hardcopies (stored with each private key) by hand.

2. Go to Blockr (https://www.coinbase.com/), paste your cold storage address into the search bar,

and press Enter.

3. You’ll be taken to a page that says “Bitcoin Address” at the top, with your cold storage address

listed underneath.

4. Your balance will be listed on the page.

8.2. Maintenance
The Maintenance Protocol is designed to minimize the risk of losing funds due to:

• Loss of private keys: Obviously if too many keys are compromised or lost (due to theft, damage,

or misplacement), your funds are lost. It’s therefore important to know ASAP if even a single key is

lost, so you can generate a replacement before more keys are lost.

• New security threats: Glacier may contain weaknesses which are currently undiscovered –

perhaps related to attacks which are not part of the current security landscape.

• Bit rot (https://en.wikipedia.org/wiki/Software_rot): The Withdrawal Protocol depends on the

availability of certain software (including not just the applications themselves, but also software

libraries those applications depend on), plus hardware and networks that are compatible with that

software. If your funds are in storage for a long time, the withdrawal tools may become obsolete

and no longer function.

We recommend the Maintenance Protocol be executed six months after the initial deposit into cold

storage, and annually thereafter.

1. Execute the Viewing Protocol to view the balance of the cold storage address and ensure that it

is as expected.

2. Check for Glacier security upgrades

a. Access the latest full release of Glacier (not just the protocol document) at https://

github.com/GlacierProtocol/GlacierProtocol/releases (https://github.com/GlacierProtocol/

GlacierProtocol/releases).

b. Open the protocol document (Glacier.pdf) within the ZIP file.

93/106

https://www.coinbase.com/
https://www.coinbase.com/
https://en.wikipedia.org/wiki/Software_rot
https://en.wikipedia.org/wiki/Software_rot
https://github.com/GlacierProtocol/GlacierProtocol/releases
https://github.com/GlacierProtocol/GlacierProtocol/releases
https://github.com/GlacierProtocol/GlacierProtocol/releases
https://github.com/GlacierProtocol/GlacierProtocol/releases
https://github.com/GlacierProtocol/GlacierProtocol/releases

c. In Appendix E, locate release notes for all versions since the last time you executed the

Maintenance Protocol (or if it’s the first time, since the Glacier version specified on your

Cold Storage Information Page).

d. See whether any of those releases recommend any security upgrades. (Any

recommendations are prominently mentioned at the top of the notes for each version.)

e. Whether or not you decide to upgrade, review the errata for the version of Glacier you are

using at https://github.com/GlacierProtocol/GlacierProtocol/releases (https://github.com/

GlacierProtocol/GlacierProtocol/releases).

3. Have each Cold Storage Information Packet visually inspected (either by you, or the signatory

that has it in custody):

a. Verify the packet is in its expected location.

b. Verify the packet’s location is secured as expected (any locks in working order, etc.)

c. Verify the packet is in good physical condition.

d. Verify the tamper-resistant seals appear to be intact.

4. Execute the Withdrawal Protocol for a small test amount.

5. Create a reminder for yourself in one year to execute the Maintenance Protocol again. (If you don’t

have a reminder system you trust, find one on the web.)

94/106

https://github.com/GlacierProtocol/GlacierProtocol/releases
https://github.com/GlacierProtocol/GlacierProtocol/releases
https://github.com/GlacierProtocol/GlacierProtocol/releases
https://github.com/GlacierProtocol/GlacierProtocol/releases

9. Extend Glacier

95/106

9.1. Extend Glacier security
Glacier is designed to provide strong protection for almost everyone – even those storing many millions

of dollars.

However, it is not designed to provide adequate protection for truly exceptional circumstances, such as a

targeted attack/surveillance effort (electronic or physical) by a well-resourced criminal organization. This

appendix briefly outlines additional measures one might consider if further security were needed above

and beyond those in the formal Glacier protocol.

We do not recommend considering these measures unless you feel you have a strong need. This list is

neither complete nor are the practices cost-effective for almost any circumstances. In addition,

implementing these measures incorrectly may decrease security rather than increase it.

Digital software security
• Verify GnuPG installation: When downloading a new copy of GnuPG on the setup computer, one

would ideally also verify the integrity of the download using the signed checksum. This requires

having a pre-existing trusted installation of GnuPG available for verifying the checksum signature.

• Cross-network checksum sourcing: Using two different computers on two different networks,

obtain all the software checksums from the Internet and verify they are identical, to reduce the

risk that the checksums are being compromised by a man-in-the-middle attack.

• Quarantined checksum verification: Verify all USB checksums on the quarantined computers to

eliminate any risk that software was altered between checksum verification on the Setup

Computers and when the USB is used in the quarantined environment. The only reason Glacier

doesn’t currently do this is because the process of verifying the App USB checksums happens as

part of Ubuntu’s apt-get application, which requires network connectivity. It can be done by hand

without apt-get, but it’s significantly more involved and so was not included in the protocol.

• Greater differentiation of quarantined environments: Instead of simply using different hardware

in each quarantined environment, use different software (including a non-Linux-derived OS and a

different Bitcoin wallet), different smartphones (and different smartphone software, i.e. QR code

readers). Different software stacks eliminate the risk that a software bug or vulnerability may

generate a flawed key. See the design document for details on why this risk is small enough to

justify leaving it unaddressed in the formal protocol.

• Dedicated pair of environments for each private key: Use extra environments such that each

environment only touches one key both when generating keys and signing transactions. Expand

the definition of “environment” to include the physical location in which Glacier is executed. This

way, compromising one environment will only compromise one key.

96/106

• Deposit transaction verification: If depositing bitcoins out of self-managed storage, don’t

immediately send a transaction directly from one’s own wallet software. Instead, first export a raw

signed transaction, and use a service like Blockr to verify the transaction is actually sending the

funds to the correct address.

• Avoid software random number generators: Use a hardware random number generator (https://

en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators) instead.

Side channel security
• Faraday cage: Use a Faraday cage (https://en.wikipedia.org/wiki/Faraday_cage) to protect against

electromagnetic side channels (example (https://www.usenix.org/legacy/event/sec09/tech/

full_papers/vuagnoux.pdf)). Faraday cages can be self-built (https://www.thesurvivalistblog.net/

build-your-own-faraday-cage-heres-how/) or professionally built (https://www.faradaycages.com/

server-rooms).

• No QR codes: Reading and relaying QR codes to a printer requires a networked device, such as a

smartphone, which could potentially receive data from side channels. Instead of using QR codes,

copy all redemption scripts and transactions by hand, and keep all nearby smartphones powered

off and in Faraday bags through protocol execution. Note that transcription of redeem scripts and

transactions is not only a painstakingly long process, but dangerously vulnerable to human error:

any mistakes in the initial transcription & storage of the redemption script will cause all funds to

be lost.

Hardware security
• Purchase factory-new Setup Computers: Don’t use existing computers for your Setup Computers.

Purchase them factory-new, and never use them on the same network (to reduce the risk of

infection by identical malware).

• Use firmware-protected USBs: Some USBs have extra features to protect against malware

targeting their firmware (e.g. BadUSB (https://arstechnica.com/information-technology/2014/07/

this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/) or Psychson (https://

github.com/brandonlw/Psychson)). Examples include Kanguru drives (https://www.kanguru.com/

secure-storage/defender-secure-flash-drives.shtml) and IronKey drives (http://www.ironkey.com/

en-US/encrypted-storage-drives/250-basic.html).

• Purchase a factory-new printer: Printers can have malware, which could conceivably interfere

with printing the hardcopy of the Glacier document. Use a new printer for printing the Glacier

document. Choose one without wireless capabilities.

• Purchase non-recommended equipment: Don’t purchase any of the suggested equipment linked

in this document – if Glacier achieves widespread adoption, that particular equipment may be

97/106

https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Faraday_cage
https://en.wikipedia.org/wiki/Faraday_cage
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.usenix.org/legacy/event/sec09/tech/full_papers/vuagnoux.pdf
https://www.thesurvivalistblog.net/build-your-own-faraday-cage-heres-how/
https://www.thesurvivalistblog.net/build-your-own-faraday-cage-heres-how/
https://www.thesurvivalistblog.net/build-your-own-faraday-cage-heres-how/
https://www.thesurvivalistblog.net/build-your-own-faraday-cage-heres-how/
https://www.faradaycages.com/server-rooms
https://www.faradaycages.com/server-rooms
https://www.faradaycages.com/server-rooms
https://www.faradaycages.com/server-rooms
https://arstechnica.com/information-technology/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
https://arstechnica.com/information-technology/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
https://arstechnica.com/information-technology/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
https://arstechnica.com/information-technology/2014/07/this-thumbdrive-hacks-computers-badusb-exploit-makes-devices-turn-evil/
https://github.com/brandonlw/Psychson
https://github.com/brandonlw/Psychson
https://github.com/brandonlw/Psychson
https://github.com/brandonlw/Psychson
https://www.kanguru.com/secure-storage/defender-secure-flash-drives.shtml
https://www.kanguru.com/secure-storage/defender-secure-flash-drives.shtml
https://www.kanguru.com/secure-storage/defender-secure-flash-drives.shtml
https://www.kanguru.com/secure-storage/defender-secure-flash-drives.shtml
http://www.ironkey.com/en-US/encrypted-storage-drives/250-basic.html
http://www.ironkey.com/en-US/encrypted-storage-drives/250-basic.html
http://www.ironkey.com/en-US/encrypted-storage-drives/250-basic.html
http://www.ironkey.com/en-US/encrypted-storage-drives/250-basic.html

targeted for sabotage to undermine the protocol (e.g. loaded dice, malware pre-installed on

computers, etc.) Select your own comparable equipment from different manufacturers.

• Purchase from stores: Buy all equipment from stores, to reduce the risk it will be tampered with

before it is delivered to you (https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-

upgrade-factory-show-cisco-router-getting-implant/). Don’t choose the stores nearest your home

or office. Don’t leave the equipment unattended until you are done using it.

• Improved tamper-evident seals on laptops: After you are done using the laptop, paint over the

hinge joints and cover screws with glitter nail polish and take a picture. The randomness of the

glitter is difficult to recreate, so if the laptop is tampered with, you can see it, and know not to use

it for future protocol operations.

• Secure or destroy quarantined hardware after use: If sensitive data was somehow stored on

quarantined hardware’s permanent media due to a protocol error or malware, then physical theft

of the hardware becomes a concern. Store the hardware somewhere secure such as a vault, or

physically destroy it first. Glacier is designed to only use a RAM disk, but it’s possible some data is

saved to permanent media (hard drive or USB) without us realizing it.

Paper key security
• Paper key encryption: Encrypt the contents of your paper keys using BIP38 (https://github.com/

bitcoin/bips/blob/master/bip-0038.mediawiki) to further protect against physical theft. Note that

the question of how to securely store the passphrase is non-trivial. It should be unique and hard to

guess, which means it is non-trivial to remember. If you are confident you can remember it, storing

it only in your own memory will not address estate planning needs. If you record it on paper, you

need to make sure those papers are stored securely – they should not be stored with the keys,

and there should be a process for checking on them periodically to make sure they are not lost or

damaged.

• Durable storage medium: TerraSlate paper is extremely rugged, but you might also consider

laminating the paper for additional protection. You’ll need a thermal laminator (http://a.co/

cZBN1YU) and laminating pouches (http://a.co/ifISzje). An even more durable approach would be

to engrave the private keys in metal.

• High-security vaults: Store keys in high-security vaults that are more resistant to theft and

disaster. See example (http://mountainvault.net/).

• Geographically distributed storage: Store keys in distant cities for resilience against a major

disaster that wipes out all keys at once.

• Multiple fund stores: Mitigate risk by splitting funds across more than one Bitcoin address, each

secured using Glacier, and don’t keep printed keys from different store in the same place.

98/106

https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
https://arstechnica.com/tech-policy/2014/05/photos-of-an-nsa-upgrade-factory-show-cisco-router-getting-implant/
https://github.com/bitcoin/bips/blob/master/bip-0038.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0038.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0038.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0038.mediawiki
http://a.co/cZBN1YU
http://a.co/cZBN1YU
http://a.co/cZBN1YU
http://a.co/cZBN1YU
http://a.co/ifISzje
http://a.co/ifISzje
http://mountainvault.net/
http://mountainvault.net/

Personal security
• Unique protocol execution site: Rather than executing Glacier at your home, office, or anywhere

else you frequent, choose a new location (e.g. a hotel) that is unlikely to have compromised or

surveillance devices present.

• Avoid location tracking: To avoid surveillance (including from adjacent rooms, via side channels

like radio waves), take steps to avoid location tracking when executing Glacier. Don’t carry a GPS-

enabled smartphone with you, don’t use credit cards for purchases, etc.

• Deliver keys by hand: Don’t use couriers or phones (https://www.cbsnews.com/news/60-minutes-

hacking-your-phone/) to send keys to trusted associates. Hand-deliver them personally or using a

trusted party.

• Conventional personal security: Home surveillance systems, bodyguards, etc.

9.2. Possible improvements to
CryptoGlacier
Don’t store electronic copy of Cold
Storage Information Page
Glacier recommends stores an electronic copy of the Cold Storage Information Page for easy copy-

pasting for subsequent deposits or withdrawals. However, this is slightly less secure & complicated –

and it’s still a good idea to check a physical copy of the Cold Storage Information Page to verify the

electronic copy hasn’t been tampered with.

Printing QR codes on the Cold Storage Information Page would be another way to avoid the need to

manually transcribe the deposits and withdrawals

No Address Reuse
Currently, Glacier reuses addresses for both depositing and withdrawing funds. As discussed in the

protocol design document, this has both privacy and security implications.

This could be implemented with HD wallets, which would allow one to generate one master key and then

use new derived addresses for each deposit or change transaction. Bitcoin Core does not yet support

importing user-generated HD wallets in a straightforward way.

99/106

https://www.cbsnews.com/news/60-minutes-hacking-your-phone/
https://www.cbsnews.com/news/60-minutes-hacking-your-phone/
https://www.cbsnews.com/news/60-minutes-hacking-your-phone/
https://www.cbsnews.com/news/60-minutes-hacking-your-phone/

Avoiding address re-use would also prevent the use of a test withdrawal. Careful consideration would

need to be given as to whether there is another way to safely test funds access, perhaps using

something like the signrawtransaction Bitcoin Core RPC.

BIP39 Mnemonic Support
BIP39 (https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki) supports the creation of

private keys encoded as an English mnemonic for ease and reliability of transcription. It’s not yet

supported by Glacier because it’s not supported by Bitcoin Core.

Sign Withdrawal Transactions With
Individual Signatures
Bringing multiple private keys together in the same physical location for the Withdrawal Protocol entails

risk (they could be physically stolen). It would be good to have an option to sign the withdrawal one

transaction at a time, probably by bringing a QR-encoded physical hardcopy of the partially-signed

transaction to the storage location of each private key.

Consider Shamir’s Secret Sharing or
Vanilla Multisig vs. P2SH Transactions
Glacier currently uses P2SH transactions. This allows all signatories storing private keys to view the

user’s balance, because a copy of the redeem script must be kept with each private key.

Vanilla multisig transactions would address this, but it’s not clear if it’s possible to do vanilla multisig

configurations with over 3 keys (https://bitcoin.stackexchange.com/questions/23893/what-are-the-

limits-of-m-and-n-in-m-of-n-multisig-addresses). Another option is to use a single Bitcoin private key, split

into n pieces using Shamir’s Secret Sharing (https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing),

which would not have any limitations on the number of keyholders, but would require additional

cryptographic software be integrated into Glacier.

Automate Quarantined USB creation
Many of the steps for creating the Quarantined USBs could be automated in a simple script.

100/106

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://bitcoin.stackexchange.com/questions/23893/what-are-the-limits-of-m-and-n-in-m-of-n-multisig-addresses
https://bitcoin.stackexchange.com/questions/23893/what-are-the-limits-of-m-and-n-in-m-of-n-multisig-addresses
https://bitcoin.stackexchange.com/questions/23893/what-are-the-limits-of-m-and-n-in-m-of-n-multisig-addresses
https://bitcoin.stackexchange.com/questions/23893/what-are-the-limits-of-m-and-n-in-m-of-n-multisig-addresses
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing

Security With Biased Dice
Assess integration of this paper and/or this algorithm (http://pit-claudel.fr/clement/blog/generating-

uniformly-random-data-from-skewed-input-biased-coins-loaded-dice-skew-correction-and-the-von-

neumann-extractor/) so that the quality of our randomness is not vulnerable to dice bias.

Entropy Quality Testing
Use an entropy test suite such as ent (http://www.fourmilab.ch/random/) to verify the quality of

generated entropy before it’s used.

Bitcoin Core Version
Pinning Currently, we download Bitcoin Core on to the Quarantined App USBs via the Ubuntu Package

archive. However, because Bitcoin is a privately-managed archive, it only hosts the latest release, rather

than all previous versions. This prevents us from pinning the protocol to use a specific release (desirable

for ongoing compatibility).

9.3. Ecosystem improvements
The Glacier protocol is lengthy and complex because the tools for high-security cold storage do not

exist. This appendix briefly outlines some of the tool functionality that would address this gap. For

additional technical details, see the Glacier design document.

Ideally, the Bitcoin community (and other cryptocurrency communities) will create these tools as soon as

possible and render Glacier obsolete. We invite inquiry and consultation by others interested in

developing these tools.

Cold Storage Hardware Wallets
• Function like conventional hardware wallets, but eternally quarantined (no wireless or wired

connections)

• I/O

◦ Keyboard for entering data (key recovery, user entropy for key generation)

◦ Camera for reading QR codes (for unsigned transactions)

◦ Screen for displaying data, including QR codes (for complex data such as signed

transactions)

101/106

http://pit-claudel.fr/clement/blog/generating-uniformly-random-data-from-skewed-input-biased-coins-loaded-dice-skew-correction-and-the-von-neumann-extractor/
http://pit-claudel.fr/clement/blog/generating-uniformly-random-data-from-skewed-input-biased-coins-loaded-dice-skew-correction-and-the-von-neumann-extractor/
http://pit-claudel.fr/clement/blog/generating-uniformly-random-data-from-skewed-input-biased-coins-loaded-dice-skew-correction-and-the-von-neumann-extractor/
http://pit-claudel.fr/clement/blog/generating-uniformly-random-data-from-skewed-input-biased-coins-loaded-dice-skew-correction-and-the-von-neumann-extractor/
http://pit-claudel.fr/clement/blog/generating-uniformly-random-data-from-skewed-input-biased-coins-loaded-dice-skew-correction-and-the-von-neumann-extractor/
http://pit-claudel.fr/clement/blog/generating-uniformly-random-data-from-skewed-input-biased-coins-loaded-dice-skew-correction-and-the-von-neumann-extractor/
http://www.fourmilab.ch/random/
http://www.fourmilab.ch/random/

• Generate keys from user-provided entropy (ideally two combined sources)

• Support for BIP39 and HD keys

• Multisig support

◦ Each wallet storing one key is probably the way to go

◦ Ability to for each device to add one single signature to a transaction, so only one key

needs to be stored on a given device

◦ Compatibility with HD keys

• Verifiability

◦ All deterministic algorithms (for key generation, transaction generation, etc.)

◦ Multiple wallet products on the market which use as many different hardware components

as possible (to minimize the possibility of a common flaw / vulnerability)

• Simple to use

• Display steps user through security steps – how to safely generate their entropy, double-checking

that addresses are correct, verifying duplicate algorithm results on an alternate device, etc.

• Optional side channel protection

◦ Partner with a company that manufactures some sort of Faraday glove box, and market it

to customers who have extra-high security concerns

Bitcoin Core improvements
Until robust cold storage hardware wallets are created, improvements in Bitcoin Core could go a long

way towards improving and simplifying Glacier, including reducing the necessary complexity of

GlacierScript.

• Add support for importing and using BIP32 HD keys.

• Generate keys based on raw user entropy so that key generation can be deterministically checked

by a second quarantine computer.

• BIP39 key generation support

◦ Promotes security through ease of use, and reduces risk of transcription errors

102/106

10. Contribute

103/106

10.1. License
All the documents are distributed under the Creative Commons Attribution-ShareAlike 4.0 International

License (https://creativecommons.org/licenses/by-sa/4.0/).

The CryptoGlacierScript software is distributed under the MIT license (https://opensource.org/licenses/

MIT).

10.2. Acknowledgments
CryptoGlacier is based on the popular Glacier Protocol (https://glacierprotocol.org)

The following individuals have offered feedback or other contributions that were incorporated into

CryptoGlacier:

• Fulvia Morales

• Your name here!

• Your name here!

• Your name here!

104/106

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://glacierprotocol.org
https://glacierprotocol.org

11. Design
documents

105/106

11.1. Design document
If you want to learn more about the security considerations for CryptoGlacier, we recommend you to

check the Glacier design document:

• v0.9 Beta (latest version)

• v0.1 Alpha

106/106

	The step-by-step protocol for storing crypto in a highly secure way
	Based on the popular Glacier protocol
	Version 0.94.1 RC2
	Check the latest version

	Glacier overview
	About CryptoGlacier
	Supported Cryptocurrencies
	Trusting this protocol
	Background
	Glacier vs CryptoGlacier
	Self-Managed Storage vs. Managed by a third party
	CryptoGlacier vs. Hardware Wallets

	Key concepts
	Private Key
	Offline Key Storage (“Cold Storage”)
	Paper Key Storage

	Multi-signature security
	Regular Private Keys are Risky
	What is Multisignature Security?
	How Does Multisignature Security Help?
	Choosing a Multisignature Withdrawal Policy
	Signatory responsibilities
	Choosing signatories

	Attack surface and failure points
	Malware infection vectors
	Failure scenarios
	Electronic failures
	Physical failures
	CryptoGlacier protocol failures
	Gnosis MultiSigWallet Failure

	Before you start
	Protocol overview
	Eternally Quarantined Hardware
	Parallel Hardware Stacks
	Electrum (and forks), Gnosis MultiSigWallet and CryptoGlacierScript
	Protocol Output
	Protocol Cost
	No Formal Support
	Privacy Considerations
	Lower-security Protocol Variants
	Out of scope

	Hardware required
	Eternally quarantined hardware: Set 1
	Eternally quarantined hardware: Set 2
	Used/existing computing equipment
	Other Equipment
	Notes

	Protocol structure
	Sensitive Data
	Terminal Usage

	Setup
	Verify and print protocol document
	Prepare non-quarantined hardware
	Prepare quarantined hardware
	Create boot USBs
	Create App USBs
	Prepare quarantined workspaces

	Key Generation
	Generate BIP39 Mnemonic
	Transfer cold storage data to paper

	Multisig Account Creation
	Create your Multisig Accounts
	Create your Bitcoin, Litecoin, and Bitcoin Cash Multisig Wallets
	Create your Ethereum Multisig Contract
	Deploying the Contract
	Create your XRP Multisign Account
	Create Cold Storage Information Packet

	Deposit
	Test deposit and withdrawal
	Deposit execution
	Store cold storage data

	Withdrawal
	Preparation
	Withdrawing Bitcoin, Litecoin or BitcoinCash
	Building the Transaction
	Signing the transaction
	Verifying and broadcasting the transaction

	Withdrawing Ethereum & ERC20 Tokens
	Gather the required information
	Proposing Transfers
	Confirming Transfers
	Broadcasting and verifying transactions
	First Transaction

	Withdrawing XRP
	Gather the required information
	Create a new Transaction
	Sign a Transaction
	Broadcasting the transactions

	Balance and maintenance
	Check your balance
	Maintenance

	Extend Glacier
	Extend Glacier security
	Digital software security
	Side channel security
	Hardware security
	Paper key security
	Personal security

	Possible improvements to CryptoGlacier
	Don’t store electronic copy of Cold Storage Information Page
	No Address Reuse
	BIP39 Mnemonic Support
	Sign Withdrawal Transactions With Individual Signatures
	Consider Shamir’s Secret Sharing or Vanilla Multisig vs. P2SH Transactions
	Automate Quarantined USB creation
	Security With Biased Dice
	Entropy Quality Testing
	Bitcoin Core Version

	Ecosystem improvements
	Cold Storage Hardware Wallets
	Bitcoin Core improvements

	Contribute
	License
	Acknowledgments

	Design documents
	Design document

